首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt has been made to characterize high-cycle fatigue behaviour of high-strength spring steel wire by means of an ultrasonic fatigue test and analytical techniques. Two kinds of induction-tempered ultra-high-strength spring steel wire of 6.5 mm in diameter with a tensile strength of 1800 MPa were used in this investigation.
The fatigue strength of the steel wires between 106 and 109 cycles was determined at a load ratio R = −1. The experimental results show that fatigue rupture can occur beyond 107 cycles. For Cr–V spring wire, the stress–life ( S – N ) curve becomes horizontal at a maximum stress of 800 MPa after 106 cycles, but the S – N curve of the Cr–Si steel continues to drop at a high number of cycles (>106 cycles) and does not exhibit a fatigue limit, which is more correctly described by a fatigue strength at a given number of cycles. By using scanning electron microscopy (SEM), the crack initiation and propagation behaviour have been examined. Experimental and analytical techniques were developed to better understand and predict high-cycle fatigue life in terms of crack initiation and propagation. The results show that the portion of fatigue life attributed to crack initiation is more than 90% in the high-cycle regime for the steels studied in this investigation.  相似文献   

2.
Flange-tube joints from fine grained steel StE 460 with unmachined welds were investigated under biaxial constant and variable amplitude loading (bending and torsion) in the range of 103 to 5 × 106 cycles to crack initiation and break-through, respectively. In order not to interfere with residual stresses they were relieved by a heat treatment. In-phase loading can be treated fairly well using the conventional hypotheses (von Mises or Tresca) on the basis of nominal, structural or local strains or stresses. But the influence of out-of-phase loading on fatigue life is severely overestimated if conventional hypotheses are used. However, the hypothesis of the effective equivalent stress that is introduced leads to fairly good predictions for constant as well as for random variable amplitude loads. Therefore, the knowledge of local strains or stresses is necessary. They are determined by boundary element analyses that are dependent on weld geometry. This hypothesis considers the fatigue-life-reducing influence of out-of-phase loading by taking into account the interaction of local shear stresses acting in different surface planes of the material. Further, size effects resulting from weld geometry and loading mode were included. Damage accumulation under a Gaussian spectrum can be assessed for in- and out-of-phase combined bending and torsion using an allowable damage sum of 0.35.  相似文献   

3.
Abstract— The use of the hot spot stress approach to the fatigue analysis of welded components is briefly described. Results are presented of fatigue tests on arc welded steel joints (C-Mn and stainless), carried out at Lappeenranta University of Technology between 1980 and 1993, based on the hot spot approach. Based on experimentally-measured hot spot strains, the fatigue capacities of around 100 specimens of C-Mn steel joints, and 80 stainless steel joints, were found to be consistent. The fatigue class FAT 100, or in many cases FAT 112 or higher, can be used as the design hot spot fatigue strength for toe failure of welded joints of moderate thickness, i.e. up to 10 mm. A sharp transition at the fusion zone from the base metal to the weld was clearly shown to be detrimental, leading to a fatigue capacity below average. The log, value of the standard deviation of fatigue life, or the fatigue capacity (Δσ3 N ), was typically 0.13 within a series of C-Mn joints. Statistical analysis of all test data concerning weld toe failure gave a standard deviation of 0.24. By considering all the specimens in one series, a mean fatigue strength of FAT 148, and a characteristic fatigue strength of FAT 107, were obtained.  相似文献   

4.
Abstract— Room temperature studies have been made of the effect of neutron damage on the mechanisms concerned with the low-cycle fatigue and tensile test behaviour of stainless steel AISI Type 304. Samples were irradiated in the HFR at Petten to a fast fluence of 5·1024 n m−2 ( E > 0·1 MeV) at 333 K followed by mechanical testing at room temperature. The low temperature irradiation caused irradiation hardening: the 0·2 yield stress increased from 230 MN m−2 for the unirradiated material to a lower yield point value of 540 MN m−2. Irradiation had no significant effect on fatigue life. The loop type damage was removed by glide dislocations resulting in cyclic softening. Dislocation substructures were observed after fatigue testing: cell structures were more pronounced after fatigue testing to failure the higher the applied strain ranges.
The formation of fatigue cracks at the surface of the specimens was observed in a series of specimens exposed to an increasing number of fatigue cycles.  相似文献   

5.
The fatigue strength of 7075-T6 aluminium alloy under combined axial loading and torsion was examined. The S-N relations were correlated with the von Mises criterion for the high cycle region ( N f≥ 104 cycles) and with the Tresca criterion for the low cycle region ( N f < 104 cycles), where N f is the cycles to failure. This transition at N r= 104 cycles was related to the occurrence of macroscopic plastic straining and a change in fracture modes. The results are discussed in comparison with those for a high strength steel (SNCM8) in a previous study. Particular attention is given to differences in cyclic deformation behaviour, fracture modes and fatigue crack growth rates between the two materials.  相似文献   

6.
Abstract— The goals in this research were to analytically and experimentally investigate the fatigue behavior of a particulate reinforced metal matrix composite subjected to axial, torsional and combined axial/torsional loadings. A series of fully-reversed uniaxial, torsional and combined axial/torsional fatigue tests were performed on a 6061/Al2O3/20p-T6 metal matrix composite material. This research investigated the ability of the Fatemi-Kurath and the Smith-Watson-Topper (SWT) damage parameters to correlate the experimentally obtained fatigue life data and also to represent the fatigue life using uniaxial strain-life constants. The Fatemi-Kurath damage parameter correlated the experimental fatigue data from all loading cases better than the SWT damage parameter. Using uniaxial strain-life constants, both damage parameters predicted fairly reasonable fatigue life calculations for the intermediate fatigue lives (103 to 104 cycles to failure), while producing non-conservative results for the shorter fatigue lives (< 103 cycles to failure).  相似文献   

7.
Gigacycle fatigue of ferrous alloys   总被引:9,自引:0,他引:9  
The objective of this paper is to determine the very long fatigue life of ferrous alloys up to 1 × 1010 cycles at an ultrasonic frequency of 20 kHz. A good agreement is found with the results from conventional tests at a frequency of 25 Hz by Renault between 105 and 107 cycles for a spheroidal graphite cast iron. The experimental results show that fatigue failure can occur over 107 cycles, and the fatigue endurance stress S max continues to decrease with increasing number of cycles to failure between 106 and 109 cycles. The evolution of the temperature of the specimen caused by the absorption of ultrasonic energy is studied. The temperature increases rapidly with increasing stress amplitudes. There is a maximum temperature between 106 and 107 cycles which may be related to the crack nucleation phase. Observations of fracture surfaces were also made by scanning electron microscopy (SEM). Subsurface cracking has been established as the initiation mechanism in ultra-high-cycle fatigue (>107 cycles). A surface–subsurface transition in crack initiation location is described for the four low-alloy high-strength steels and a SG cast iron.  相似文献   

8.
There is no infinite fatigue life in metallic materials   总被引:11,自引:0,他引:11  
Generally, the shape of the S – N curve beyond 107 cycles is unknown except in some statistical approaches, and this is also true for the fatigue limit. In the case of a statistical approach, the standard deviation applied to the average fatigue limit is certainly not the best way to reduce the risk of rupture in fatigue. Only the exploration of the life range between 106 and 1010 cycles will create a safer basis for modelling.
Today, some piezoelectric fatigue machines are very reliable, capable of producing 1010 cycles in less than 1 week. We based our research on accelerated fatigue tests which were performed at 20  kHz in the gigacyclic fatigue regime in order to study several typical alloys from the aeronautical and space industries.  相似文献   

9.
Investigations were performed on helicopters' gears that had failed in service, using quantitative fractographic analyses. It was shown that a combination of LCF and HCF creates damage in gears on a flight-by-flight basis which produces beach marks on the fatigue surface of the gears that correlate one-to-one with flight cycles. The crack increment between beach marks occurs under HCF at 7000–8000  r.p.m. The ratio of the crack growth period to durability is smaller in the gigacycle fatigue area (more than 108 cycles) than in the high cycle fatigue area (106–107 cycles) for those gears investigated that have stress raisers. This relationship for damaged gears depends not only on durability but also on the type of stress raiser and its location.  相似文献   

10.
An investigation has been carried out on austenitic stainless steel 0Kh16N15M3B under normal conditions and also to neutron irradiation of 6.8 × 1016nm-2s-1 ( E > 0.1 MeV) intensity. Thin-walled torsion cylindrical specimens were tested in strain-controlled fully reversed loading mode at 923 K. Various ranges of strain, pre-loading fluences and half-cycle hold times (1, 5 and 30min) were applied. Neutron irradiation was found to result in hardening of the steel, stimulating cyclic stress relaxation and a reduction in cyclic life. When acting together, neutron irradiation and static loads cause a more significant reduction in the number of cycles to failure than if summed up as independent factors. Application of a kinetic failure criterion based on a damage parameter enables an estimation to be made of the limiting state of the steel under high-temperature cyclic loading with hold periods.  相似文献   

11.
High cycle fatigue fracture surfaces of specimens in which failure was initiated at a subsurface inclusion were investigated by atomic force microscopy and by scanning electron microscopy. The surface roughness R a increased with radial distance from the fracture origin (inclusion) under constant amplitude tension–compression fatigue, and the approximate relationship: R a ≅ C Δ K 2I holds. At the border of a fish-eye there is a stretched zone. Dimple patterns and intergranular fracture morphologies are present outside the border of the fish-eye. The height of the stretch zone is approximately a constant value around the periphery of the fish-eye. If we assume that a fatigue crack grows cycle-by-cycle from the edge of the optically dark area (ODA) outside the inclusion at the fracture origin to the border of the fish-eye, we can correlate the crack growth rate d a/ d N , stress intensity factor range Δ K I and R a for SCM435 steel by the equation
   
and by d a/ d N proportional to the parameter R a .
Integrating the crack growth rate equation, the crack propagation period N p2 consumed from the edge of the ODA to the border of the fish-eye can be estimated for the specimens which failed at N f > 107. Values of N p2 were estimated to be ∼1.0 × 106 for the specimens which failed at N f ≅ 5 × 108. It follows that the fatigue life in the regime of N f >107 is mostly spent in crack initiation and discrete crack growth inside the ODA.  相似文献   

12.
In this study a comparison is made between the tensile static and fatigue behaviours of quasi-isotropic carbon/PEEK and carbon/epoxy notched laminates, selected as separate representatives of both tough and brittle matrix composites. Damage progression was monitored by various non-destructive (ultrasonic scanning and x-radiography) and destructive (deply and microscopic examinations) techniques, and by continuously measuring the change in stiffness, in order to identify the effect of damage on mechanical properties.
The experimental observations indicated that fatigue damage in carbon/epoxy laminates consists of a combination of matrix cracks, longitudinal splitting and delaminations which attenuate the stress concentration and suppress fibre fracture at the notch; as a consequence, fatigue failure can be reached only after very high numbers of cycles while tensile residual strengths continuously increase over the range of lives investigated (103–106 cycles). Due to the superior matrix toughness and the high fibre-matrix adhesion, the nature of fatigue damage in carbon/PEEK laminates strongly depends on the stress level. At high stresses the absence of early splitting and delaminations promotes the propagation of fibre fracture therefore resulting in poor fatigue performances and significant strength reductions; while at low stress levels damage modes are matrix controlled and this again translates into very long fatigue lives. These results indicate a strong influence of the major damage mechanisms typical of the two material systems on the behaviour of the laminates, with the nature, more than the amount, of damage appearing as the controlling parameter of the material response up to failure.  相似文献   

13.
Abstract— Low cycle fatigue tests at 650°C on 20% Cr–25% Ni–Nb stainless steel have been carried out under conditions of equal tension/compression ramp rates (10−3 s−1) and slow tension–fast compression ramp rates (10−6 s−1/10−3 s−1). It was found that the latter cycle significantly reduced endurance. Detailed metallography revealed that life reduction is due to the accumulation of creep damage during the slow tensile ramp. It is proposed that at high strain ranges, failure is creep dominated and this changes to a creep-fatigue interaction failure mechanism at low strain ranges.
Predictive models have been developed based on cavity growth mechanisms and ductility exhaustion. Both techniques provide an accurate life prediction and only limited data are required to use them.  相似文献   

14.
Abstract— Gas transmission pipes are sometimes subject to external damage due to interference by excavators. Optimized grinding of gouges may offer a solution in repairing pipes. Since pipelines may be subjected to internal pressure variations, the Dang Van criterion has been used to size the allowable grinding depth. The criterion's boundary has been determined from uniaxial fatigue testing and extrapolated to the higher hydrostatic pressure which occurs in practice. The aim of this paper is to check by means of biaxial fatigue tests on specimens, that this extrapolation ensures a lifetime of 105 cycles for the ground pipes. The state of stresses in the central area of the biaxial specimen was calculated from an elastic finite element simulation. The test machine had independent motions of the two perpendicular axes of loading. The fatigue testing was limited to 105 cycles and was carried out at a hydrostatic pressure of 200 MPa. The results validated the extrapolation technique for the Dang Van criterion.  相似文献   

15.
Abstract— It is well known that the fatigue strength of a thick-walled cylinder is enhanced by autofrettage. However, this does not appear to have been explained from fracture mechanics. The present paper shows that two uncertainties arise when this is attempted. Firstly, the distribution of residual stress resulting from the autofrettage pressure must be estimated and secondly a realistic stress intensity factors for subsequent fatigue cracking must be defined. A number of available stress intensity solutions are modified with the author's predictions to the residual stress following an elastic-plastic autofrettage pressure in a closed cylinder of hardening material. A comparison with experiment has enabled the various approaches to be appraised. It is shown that a modified stress intensity factor of Bowie and Freese is most consistent with the propagation fatigue life observed in autofrettaged cylinders provided their solution is adapted to account for the propagation of a semi-elliptical crack front in the presence of residual stress. Other K 1 estimates appear to lead to dangerously optimistic predictions particularly within the range of fluctuating pressure where failure occurs between 105 and 106 cycles. The contribution to fatigue failure from initiation cycles is expressed as a power function of the observed life for cyclic pressures in the region of the fatigue limit.  相似文献   

16.
Abstract— The fatigue crack growth behavior of small part-through cracks in 1045 steel and Inconel 718 subjected to biaxial loading has been investigated. Experiments were performed on thin-wall tubular specimens loaded in tension, torsion and combined tension torsion. Crack sizes analyzed ranged from 20 μm to 1 mm and growth rates ranged from 10-7 to 10-4 mm/cycle for 1045 steel and from 10-5 to 10-2 mm/cycle for Inconel. Nucleation and the early growth of cracks occurs on planes of maximum shear strain amplitude for both of these materials even in tensile loading. An equivalent strain based intensity factor was employed to correlate the crack growth rate under mixed mode loading conditions In loading conditions other than torsion, a transition from mode II to mode I was observed for 1045 steel. Principal strains were used to analyze mode I cracks. Cracks in Inconel 718 grow in mode II for the majority of the fatigue life. The maximum shear strain amplitude and the tensile strain normal to the maximum shear strain amplitude plane were used to calculate the strain based intensity factor for mixed mode loading.  相似文献   

17.
通过拉剪实验测定1.5mm厚SUS304不锈钢点焊接头、胶焊接头的抗拉强度,并开展疲劳实验,获得不同应力水平下两种接头的疲劳寿命,得到两种接头的载荷-寿命曲线;借助扫描电镜分析接头疲劳失效过程。结果表明:当焊接电流为10.0kA、焊接时间为80ms、电极压力为0.5 MPa时,能获得较好的胶焊接头。在此焊接参数下,点焊接头、未固化胶焊接头和固化胶焊接头的平均失效载荷分别为12 825.5N、10 345.6N、10 022.9N;在疲劳实验载荷-寿命曲线的有限寿命区内,SUS304不锈钢胶焊接头的疲劳强度均大于点焊接头;点焊接头和胶焊接头的疲劳失效形式主要由母材眉状裂纹失效和界面撕裂失效两种形式组成;胶焊接头的疲劳失效过程中,首先是胶层粘接失效,随后疲劳裂纹从板间内表面热影响区边缘萌生,沿板厚与板宽方向扩展直至发生疲劳失效。  相似文献   

18.
在室温下用强度为70 ke V的He+辐照CLAM钢焊缝,使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和连续刚度纳米压痕技术(CSM)对其表征,研究了He+辐照对CLAM钢焊缝的微观组织和性能的影响。结果表明,随辐照剂量的增大焊缝表面黑色孔洞的尺寸增大、密度提高;辐照剂量为1×1017ions·cm-2时,在两种焊缝中形成的位错环的尺寸分别约为18.97 nm、15.73 nm,数密度分别约为2.24×1021m-3、1.78×1021m-3,氦泡引起的辐照肿胀率分别约为1.7%和0.4%;辐照缺陷(位错环、氦泡)导致的辐照硬化率分别为49.0%和29.9%。与焊态焊缝相比,调质处理态焊缝的辐照损伤较弱,在一定程度上表明经调质处理后焊缝的抗辐照性能有所提高。  相似文献   

19.
The fatigue property of dissimilar spot welds between an aluminium alloy (AA5052) and a magnesium alloy (AZ31) was studied in this research. The AA5052 and AZ31 coupons were resistance spot welded together by using an interlayer of Sn‐coated steel between the two coupons. The fatigue test results revealed that the Mg/Al joints had the same level of fatigue strength as Mg/Mg resistance spot welds. It was found that within the life range of Nf < 105 cycles, Mg/Al welds degraded faster than Mg/Mg joints. This was attributed to the larger bending moment on the plane of fatigue failure in the Mg/Al welds. Three failure modes were observed under different cyclic loading regimes: Al/steel interfacial failure, Mg coupon failure and Al coupon failure. Fatigue fracture surface of Mg/Al welds consisted of two distinct regions: crack propagation region with brittle morphology and final rupture with ductile morphology.  相似文献   

20.
A new probabilistic approach is developed to study structures made of spheroidal graphite cast iron and subjected to very high-cycle fatigue. Until now, the probabilistic approach was based on S–N curves obtained from experiments carried out only until 107 cycles. To validate this approach, failure predictions relating to the safety of components are computed and compared to experimental results. In addition to this development, an extension is proposed in order to improve the very long life assessment of complex structures. An extrapolation of the previous fatigue results to 109–1011 cycles illustrates the error made on cumulative failure probabilities. Finally, the respective influence of the casting flaw distribution, volume and stress field heterogeneity within specimens and industrial components is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号