首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The cytosine analog 2'-deoxy-3'-thiacytidine (3TC) has been shown to be an effective treatment for chronic hepatitis B virus (HBV) infection. However, several liver transplant patients who were undergoing treatment with 3TC for HBV infection experienced a breakthrough of virus while on 3TC. The predominant virus found in these patients' sera contained either a valine or isoleucine for the methionine in the highly conserved YMDD nucleotide binding site in the HBV polymerase. To determine the biological relevance of the Met-to-Val substitution, we mutated a plasmid that contained a cDNA copy of the HBV pregenomic RNA such that when virus replication occurred during transient transfection of HepG2 cells, an M539V polymerase variant was produced. We found that in transiently transfected cells, this variant was approximately 330-fold less sensitive to the antiviral effects of 3TC and produced 7-fold less viral DNA than the wild type.  相似文献   

2.
3.
2',3'-Dideoxy-2',3'-didehydro-beta-L(-)-5-fluorocytidine [L(-)Fd4C] was found to be at least 10 times more potent than beta-L-2',3'-dideoxy-3'-thiacytidine [L(-)SddC; also called 3TC, or lamivudine]against hepatitis B virus (HBV) in culture. Its cytotoxicity against HepG2 growth in culture was also greater than that of L(-)SddC (3TC). There was no activity of this compound against mitochondrial DNA synthesis in cells at concentrations upto 10 microM. The dynamics of recovery of virus from the medium of cells pretreated with equal drug concentrations were slower with L(-)Fd4C than with L(-)SddC (3TC). L(-)Fd4C could be metabolized to mono-, di-, and triphosphate forms. The degree of L(-)Fd4C phosphorylation to the 5'-triphosphate metabolite was higher than the degree of L(-)SddC (3TC) phosphorylation when equal extracellular concentrations of the two drugs were used. The apparent K(m) of L(-)Fd4C phosphorylated metabolites formed intracellularly was higher than that for L(-)SddC (3TC). This may be due in part to a difference in the behavior of L(-)Fd4C and L(-)SddC (3TC) towards cytosolic deoxycytidine kinase. Furthermore, L(-)Fd4C 5'-triphosphate was retained longer within cells than L(-)SddC (3TC) 5-triphosphate. L(-)Fd4C 5'-triphosphate inhibited HBV DNA polymerase in competition with dCTP with a Ki of 0.069 +/- 0.015 microM. Given the antiviral potency and unique pharmacodynamic properties of L(-)Fd4C, this compound should be considered for development as an expanded-spectrum anti-HBV drug.  相似文献   

4.
5.
The viral polymerase and several cis-acting sequences are essential for hepadnaviral DNA replication, but additional host factors are likely to be involved in this process. We previously identified two sequences, UBS and DBS (upstream and downstream binding sites), present in multiple copies in and adjacent to the pregenomic RNA (pgRNA) terminal redundancy, that were specifically recognized by a 65-kDa host factor, p65. The possible roles of these two sequences in hepatitis B virus (HBV) replication were investigated in the context of the intact viral genome. UBS is contained within the terminal redundancy of pgRNA, and the 5' copy of this sequence is essential for viral replication. Mutations within the central core of UBS ablate p65 binding and selectively block synthesis of plus-strand DNA, without affecting RNA packaging or minus-strand synthesis. The DBS sequence, which is located downstream of the pgRNA polyadenylation site, overlaps the core (C) protein coding region. All mutations introduced into this site severely affected viral replication. However, these effects were shown to result from dominant negative effects of mutant core polypeptides rather than from cis-acting effects on RNA recognition. Thus, the 5' UBS but not DBS sites play important cis-acting roles in HBV DNA replication; however, the involvement of p65 in these roles remains a matter for investigation.  相似文献   

6.
7.
The pharmacodynamics of (-)-beta-2',3'-dideoxy-3'-thiacytidine (3TC) was studied in chronically woodchuck hepatitis virus-infected woodchucks and compared to that in previous studies in hepatitis B virus (HBV)-infected humans. Net depletion rates of serum virus DNA in woodchucks receiving 3TC were modeled as a sum of an exponentially declining virus input and a first-order elimination. Preceding shoulders and pseudo-first-order virus half-lives in serum ranged from 1 to 7 days and were dose dependent. Higher plasma 3TC concentrations were needed in woodchucks for virus depletion similar to that attained in humans. Human HBV depletion curves from a previous clinical study with 3TC (>/=100 mg per day) were described by a biexponential relationship. The average half-life value in humans, normalized to fraction of area under the serum virus load-time curve, was similar to the average half-life value observed in woodchucks given the highest 3TC dose (2.4 and 2.0 days, respectively). On cessation of therapy, virus load rebounds in woodchucks were dose dependent and resembled posttherapy virus "flares" reported to occur in humans. The estimates of drug exposures that could lead to optimal antiviral effects presented indicate that 3TC should not be underdosed and compliance should be monitored. The study of chronically infected woodchucks may prove useful for optimizing drug regimens for hepadnavirus infections.  相似文献   

8.
9.
10.
11.
We investigated effects of isoscutellarein-8-methylether (5,7,4'-trihydroxy-8-methoxyflavone, F36) from the roots of Scutellaria baicalensis on the single-cycle replication of mouse-adapted influenza viruses A/Guizhou/54/89 (H3N2 subtype) and B/Ibaraki/2/85 in Madin-Darby canine kidney (MDCK) cells. The agent suppressed replication of these viruses from 6 to 12 h after incubation in a dose-dependent manner by 50% at 20 microM and 90% at 40 microM, respectively. F36 (50 microM) reduced the release of B/Ibaraki virus in the medium by 90-93% when it was added to the MDCK cells at 0 to 4 h after incubation. The cell-associated virus determined by sialidase activity was also reduced by the treatment at 0 to 4 h. F36 (120 microM) inhibited the low pH-dependent membrane fusion of both the viruses with the liposome containing mixed gangliosides from bovine brain. However, the agent little affected the hemagglutination and RNA-dependent RNA polymerase activities of these viruses in vitro. These results suggest that F36 inhibits the replication of A/Guizhou and B/Ibaraki viruses at least partly by inhibiting the fusion of viral envelopes with the endosome/lysosome membrane which occurs at the early stage of the virus infection cycle. F36 (0.5 mg/kg) showed no antiviral activity against A/Guizhou and B/Ibaraki viruses in mice when administered intranasally 5 min prior to virus inoculation, whereas it significantly inhibited their proliferation in the mouse lung when administered intranasally 7 times (total 3.5 mg/kg) from 18 h before to 54 h after virus infection.  相似文献   

12.
1-(2'-Deoxy-2'-fluoro-beta-L-arabinofuranosyl)-5-methyluracil (L-FMAU) was shown to have potent antiviral activity against Epstein-Barr virus (EBV) without any cellular toxicity at concentrations up to 200 microM (Yao et al., Biochem Pharmacol 51: 941-947, 1996). The 5'-triphosphate of L-FMAU was not a substrate for EBV or cellular DNA polymerases, but could inhibit the elongation reaction, 3'-to-5' exonuclease activity, and nucleotide turnover catalyzed by EBV DNA polymerase. DNA synthesis catalyzed by human DNA polymerases was inhibited to a lesser extent. The inhibition pattern of EBV DNA polymerase by L-FMAU-5'-triphosphate (L-FMAU-TP) was consistent with an uncompetitive mechanism when dNTP or template-primer were used as the variable substrates. The Ki values were 38+/-10 microM for the elongation reaction, and about 50+/-10 microM for both nucleotide exchange and 3'-to-5' exonuclease reactions, values that were 10-20 times less than that for GMP. L-FMAU-TP is the first nucleoside 5'-triphosphate shown to have such unique behavior toward DNA polymerases. EBV DNA polymerase could be one of the targets for the inhibitory effect of L-FMAU-TP on EBV replication.  相似文献   

13.
Inactivation of progeny virions with chimeric virion-associated proteins represents a novel therapeutic approach against human immunodeficiency virus (HIV) replication. The HIV type 1 (HIV-1) Vpr gene product, which is packaged into virions, is an attractive candidate for such a strategy. In this study, we developed Vpr-based fusion proteins that could be specifically targeted into mature HIV-1 virions to affect their structural organization and/or functional integrity. Two Vpr fusion proteins were constructed by fusing to the first 88 amino acids of HIV-1 Vpr the chloramphenicol acetyltransferase enzyme (VprCAT) or the last 18 C-terminal amino acids of the HIV-1 Vpu protein (VprIE). These Vpr fusion proteins were initially designed to quantify their efficiency of incorporation into HIV-1 virions when produced in cis from the provirus. Subsequently, CD4+ Jurkat T-cell lines constitutively expressing the VprCAT or the VprIE fusion protein were generated with retroviral vectors. Expression of the VprCAT or the VprIE fusion protein in CD4+ Jurkat T cells did not interfere with cellular viability or growth but conferred substantial resistance to HIV replication. The resistance to HIV replication was more pronounced in Jurkat-VprIE cells than in Jurkat-VprCAT cells. Moreover, the antiviral effect mediated by VprIE was dependent on an intact p6(gag) domain, indicating that the impairment of HIV-1 replication required the specific incorporation of Vpr fusion protein into virions. Gene expression, assembly, or release was not affected upon expression of these Vpr fusion proteins. Indeed, the VprIE and VprCAT fusion proteins were shown to affect the infectivity of progeny virus, since HIV virions containing the VprCAT or the VprIE fusion proteins were, respectively, 2 to 3 times and 10 to 30 times less infectious than the wild-type virus. Overall, this study demonstrated the successful transfer of resistance to HIV replication in tissue cultures by use of Vpr-based antiviral genes.  相似文献   

14.
15.
16.
17.
Full-length simian hemorrhagic fever virus (SHFV) genome RNA (about 15 kb in length) and six subgenomic RNAs, ranging in size from 0.65 to 4.7 kb, were detected by Northern blot hybridization in MA104 cytoplasmic extracts with a 3' genomic antisense probe. The 5' regions of the two smallest subgenomic RNAs (RNAs 6 and 7) were cloned and sequenced. Sequence analysis indicated that these two RNAs contained a common 5' leader sequence joined to the subgenomic RNA bodies via a highly conserved junction sequence; the junction sequence of RNA 7 was 5'-TTAACC-3', while that of RNA 6 was 5'-TCAACC-3'. The complete 5' leader sequence (208 nt) was obtained from genomic RNA. The genomic 5' junction sequence is identical to that of RNA 7. Northern blot hybridization with an antisense 5' leader probe confirmed the presence of the complete leader sequence in all six species of subgenomic RNA. In its virion morphology, genome size, gene order, and replication strategy, SHFV is most similar to viruses such as equine arteritis virus, lactate dehydrogenase-elevating virus, and Lelystad virus/porcine respiratory and reproductive syndrome virus.  相似文献   

18.
9-(2-Phosphonylmethoxyethyl)adenine (PMEA) was evaluated for its inhibitory effect on hepadnavirus replication in three different cell systems, i.e., human hepatoma cell lines HepG2 2.2.15 and HB611 (transfected with human hepatitis B virus (HBV)) and primary cultures of duck hepatocytes infected with duck hepatitis B virus (DHBV). PMEA inhibited HBV release from HepG2 2.2.15 cells and HB611 cells at a 50% inhibitory concentration (IC50) of 0.7 and 1.2 microM, respectively. Intracellular viral DNA synthesis was inhibited at concentrations equivalent to those required to inhibit virus release from the cells. DHBV secretion from duck hepatocytes was inhibited by PMEA at an IC50 of 0.2 microM. HBsAg secretion was inhibited by PMEA in a concentration-dependent manner in HB611 cells and DHBV-infected duck hepatocytes but not HepG2 2.2.15 cells. The 50% cytotoxic concentration, as measured by inhibition of [3H-methyl]deoxythymidine incorporation was 150 microM for the two human hepatoma cell lines and 40 microM for the duck hepatocyte cultures. In a pilot experiment PMEA was found to reduce the amounts of DHBV DNA in the serum of Pekin ducks.  相似文献   

19.
All retroviruses (except the spumaretroviruses) contain a nucleocapsid (NC) protein that encodes one or two copies of the Zn2+-finger sequence -Cys-X2-Cys-X4-His-X4-Cys-. This region has been shown to be essential for recognition and packaging of the genomic RNA during virion particle assembly. Additionally, this region has been shown to be involved in early infection events in a wide spectrum of retroviruses, including mammalian type C [e.g., murine leukemia virus (MuLV)], human immunodeficiency virus type 1 (HIV-1), Rous sarcoma virus, and other retroviruses. Mutations in the two Zn2+-fingers of the NC protein of simian immunodeficiency virus strain Mne [SIV(Mne)] have been generated. The resulting virions contained the normal complement of processed viral proteins with densities indistinguishable from wild-type SIV(Mne). All of the mutants had electron micrograph morphologies similar to those of immature particles observed in wild-type preparations. RNA packaging was less affected by mutations in the NC protein of SIV(Mne) than has been observed for similar mutants in the MuLV and HIV-1 systems. Nevertheless, in vitro replication of SIV(Mne) NC mutants was impaired to levels comparable to those observed for MuLV and HIV-1 NC mutants; replication defective NC mutants are typically 10(5)- to 10(6)-fold less infectious than similar levels of wild-type virus. One mutant, DeltaCys33-Cys36, was also found to be noninfectious in vivo when mutant virus was administered intravenously to a pig-tailed macaque. NC mutations can therefore be used to generate replication defective virions for candidate vaccines in the SIV macaque model for primate lentiviral diseases.  相似文献   

20.
The polycistronic expression mechanism of the plant pararetrovirus figwort mosaic caulimovirus (FMV) depends upon cis-acting elements present in its pregenomic RNA and a trans-acting protein (P6) which is expressed from a monocistronic subgenomic RNA. Using transient expression of FMV-derived polycistronic reporter constructs in Nicotiana edwardsonii cell suspension protoplasts, we further analyzed the cis-acting elements involved in polycistronic expression. A cis-acting element located within the first 74 nucleotides of the 7,954-nucleotide pregenomic RNA appears to be essential for P6 to transactivate expression of an internal cistron. Expression of this internal cistron, in the presence of P6, is greatly enhanced by the combined presence of two cis-acting elements located at the 3' end of the polycistronic RNA. Surprisingly, deletion of the most upstream of these two 3' cis-acting elements exposed a negative-acting element located internally on the polycistronic RNA, at the 3' end of open reading frame I. The action of both this negative-acting internal element and the positive-acting 3' elements is more pronounced when the large 5' untranslated leader region is present. This indicates that the 5' untranslated leader region is central to regulation of the FMV gene expression mechanism. Although a limited set of elements suffices to direct polycistronic expression in this eukaryotic system, a complex interplay between elements is involved in the spatial regulation of the genes present on the pregenomic RNA of FMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号