首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Stress development during the constrained sintering of a sandwich structure of alumina/glass/alumina has been studied. Stress distribution in the glass layer was calculated using a finite element method. The shear stress exhibited a maximum at the edge of the alumina/glass interface. The in-plane tensile stress, formed during constrained sintering, decreased from the interface of the alumina/glass to the middle of the glass in the z -direction, but increased from the edge to the center of glass in the x − y direction. This in-plane tensile stress reduces the driving force of densification, resulting in a larger x − y shrinkage and higher densification in the middle of the glass.  相似文献   

2.
Nanosized TiN powder was densified via field-assisted sintering at temperatures of 1150°–1350°C and a pressure of 66 MPa under vacuum. A maximum relative density of ∼97% and a maximum mean grain size of 150–200 nm were obtained. Densification and microstructural evolution have been discussed, in terms of superplasticity and electric-field effects.  相似文献   

3.
Silicon carbide is a promising structural ceramic used as abrasives and applied in metallurgical components, due to its low density, high hardness, and excellent mechanical properties. The composition and content of the additive can control liquid-phase sintering of SiC. Compositions based on the SiO2–Al2O3–RE2O3 system (RE = rare earth) have been largely used to promote silicon carbide densification, but most studies are not systematically presented. The aim of this work is to study the effect of several oxide additives in the SiO2–Al2O3–Y2O3 system on the densification of silicon carbide using experimental design. This technique seems to be effective in optimizing the values of maximum density with minimum weight loss.  相似文献   

4.
The densification behavior of fine alumina (mean particle size of ∼0.31 μm) and coarse alumina (mean particle size of ∼4.49 μm) during liquid-phase sintering with additions of talc have been studied, as well as the microstructural evolution. Small amounts (0, 5, and 10 wt%) of talc were added to the fine alumina and coarse alumina, which were sintered at various temperatures for 2 h. When 5 wt% of talc was added to the coarse alumina, densification proceeded rapidly above the liquid-formation temperature in alumina–talc compacts, because of the promotion of a rearrangement process of the solid grains by the liquid phase. The addition of 10 wt% of talc greatly accelerated densification by increasing the volume fraction of liquid. On the other hand, in the fine alumina, which has a higher activity and a greater driving force for sintering, appreciable densification started below the liquid-formation temperature, which prevented further densification after liquid formation. Moreover, the densification was suppressed as the talc content increased. The rigid skeleton of solid grains that was formed by densification below the liquid-formation temperature is believed to have suppressed the rearrangement process of the solid grains, and further densification of the compacts was retarded, even after the formation of a liquid phase above the liquid-formation temperature.  相似文献   

5.
The stress required for complete constrained sintering of a low-temperature cofirable ceramic-filled glass composite, i.e., borosilicate glass + alumina, has been investigated under uniaxial constant and cyclic loading. The required uniaxial stress to have complete constrained sintering, i.e., zero strain or strain rate in the perpendicular directions, is in the range of 20–250 kPa, which initially increases with temperature, reaches a maximum at 725°–800°C, and then decreases with increasing temperature. The above measured data exhibit a similar trend to those of required stress and sintering potential calculated using the viscous analogy for the constitutive relationship of a porous sintering compact.  相似文献   

6.
To determine how grain‐boundary composition affects the liquid phase sintering of MgO‐free Bayer process aluminas, samples were singly or co‐doped with up to 1029 ppm Na2O and 603 ppm SiO2 and heated at 1525°C up to 8 h. Na2O retards densification of samples from the onset of sintering and up to hold times of 30 min at 1525°C compared to the undoped samples, but similar to the as‐received, MgO‐free Al2O3, Na2O‐doped samples sinter to 98% density with average grain sizes of ~3 μm after 8 h. Increasing SiO2 concentration significantly retards densification at all hold times up to 8 h. The estimated viscosities (20?400 Pa·s) of the 0.3 to 1.8 nm thick siliceous grain‐boundary films in this study indicate that diffusion greatly depends on the composition of the liquid grain‐boundary phase. For low Na2O/SiO2 ratios, densification of Bayer Al2O3 at 1525°C is controlled by diffusion of Al3+ through the grain‐boundary liquid, whereas for high Na2O/SiO2 ratios, densification can be governed by either the interface reaction (i.e., dissolution) of Al2O3 or diffusion of Al3+. Increasing Na2O in SiO2‐doped samples increases diffusion of Al3+ and Al2O3 solubility in the liquid, and thus densification increases by 1%. Based on these findings, we conclude that Bayer Al2O3 densification can be manipulated by adjusting the Na2O to SiO2 ratio.  相似文献   

7.
This paper reports on the influence of rapid rate sintering (RRS) on densification and microstructure evolution of yttria transparent ceramics by using vacuum sintering. The presence of temperature gradient has been confirmed during the RRS process. The higher the heating rate (HR), the larger the temperature gradient in the samples would be. By using RRS, e.g., HR = 40°C/min, the samples could be densified very fast to a relative density of 99.6%. However, these samples could not be further densified, due to the presence of difference in densification caused by a heating rate‐induced temperature gradient. By using a two‐step RRS with an intermediate‐temperature thermal treatment, this problem has been successfully addressed. The intermediate‐temperature treatment allowed for the particle neck growth, so that effective thermal conductivity of the compacts was increased greatly. Therefore, the temperature gradient and differentiate densification were effectively prevented. Samples sintered using the two‐step RRS process could be fully densified and excellent in‐line optical transmittance was achieved. It is believed this strategy is applicable to other transparent ceramics, as well as other engineering ceramics.  相似文献   

8.
Constrained Film Sintering of Nanocrystalline TiO2   总被引:1,自引:1,他引:0  
The sintering of thin, nanocrystalline TiO2 films either 140 or 65 nm thick is characterized and compared with the sintering of bulk material. Grain size, pore size distribution, and density data are obtained. Observation of the microstructural evolution during sintering suggests that grain growth, as well as pore growth, at low density can be attributed to differential sintering. A continuum mechanical model for the intermediate stage is useful until the grain size becomes one-half the film thickness. From then on, the ratio of grain size to film thickness affects the degree by which both densification and grain growth decrease, as compared with the continuum computation results.  相似文献   

9.
The sintering and the crystallization of two iron-rich glass compositions (45–75-μm powder fractions) were studied in air and nitrogen atmospheres. The phase formation was evaluated by differential thermal analysis, while the densification, by dilatometry; the crystalline phases were identified by X-ray diffraction and the structure observed by scanning electron microscopy. It was highlighted that, due to the absence of Fe2+ oxidation and lower viscosity of the parent and residual glasses, the sintering in nitrogen atmospheres occurs at 100°–200°C lower temperature. In the same time the higher amount of crystal phase, formed during sinter–crystallization in inert atmosphere, improves the mechanical properties. A value of 120 MPa for the bending strength was obtained after 1-h sintering at 960°C in N2.  相似文献   

10.
Models of simultaneous coarsening and densification in final stage sintering commonly assume that the coarsening process results in microstructures that evolve self-similarly from a fixed microstructural geometry, differing only in scale. This assumption is experimentally tested for alumina in the solid volume fraction range of 0.97–1 using nondimensional microstructural parameters. The results clearly show that such models based on assumed geometries often underestimate the pore size relative to the grain size. The largest differences between the model and the experiments occur for lower firing temperatures and higher doping levels. It is concluded that the coarsening reflected in the effect of temperature and dopant level is not a self-similar process from a common microstructural geometry.  相似文献   

11.
The effect of the addition of Bi2O3 on the densification, low-temperature sintering, and electromagnetic properties of Z-type planar hexaferrite was investigated. The results show that Bi2O3 additives can improve the densification and promote low-temperature sintering of Z-type hexaferrite prepared by a solid-state reaction method. The presence of Bi2O3 in the grain boundaries and the generation of Fe2+ degrade the initial permeability of the samples but make the quality factor and cut-off frequency increase. Various possible mechanisms involved in generating these effects were also discussed.  相似文献   

12.
Surface energy (γS) and grain boundary energy (γGB) of yttrium oxide (Y2O3) were determined by analyzing the heat of sintering (ΔHsintering) using differential scanning calorimetry (DSC). The data allowed quantification of sintering driving forces, which when combined with a thorough kinetic analysis of the process, provide better understanding of Y2O3 densification as well as insights into effective strategies to improve its sinterability. The quantitative thermodynamic study revealed moderate thermodynamic driving force for densification in Y2O3 (as compared to other oxides) represented by a dihedral angle of 152.7° calculated from its surface and grain boundary energies. The activation energy was determined as 307 ± 61 kJ/mol, consistent with activation energies previously reported for processes relevant to sintering of Y2O3, such as Y3+ diffusion and grain boundary mobility. Finally, we propose that a refined deconvolution study on the DSC curve for Y2O3 sintering, combined with the associated material's microstructure evolution, may help identify shifts in sintering mechanisms, and therefore, specific activation energies at increasing temperatures.  相似文献   

13.
An analytical model for the sintering stress of materials characterized by a nonlinear viscous behavior during densification is proposed. The growing applications in the field of nanosized powders processing (in particular, consolidation of high surface area components used in supercapacitors, rechargeable batteries, gas absorbers) have renewed the interest in this fundamental parameter of sintering science, because of the sintering stress’ characteristic inverse proportionality with respect to the powder particles radius. This increase in the magnitude of the sintering stress is also responsible for power‐law creep being the mechanism that underlies densification even without the application of any additional external load, and therefore for a nonlinear viscous behavior of the solid material. The analytical treatment of problems involving nonlinear viscous materials has traditionally involved complex self‐consistent methods and approximations, unless the local case of an isolated pore embedded in a fully dense skeleton was considered. The paper proposes a simple first‐order iterative method that allows the derivation of both bulk modulus and sintering stress of a material containing an arbitrary amount of pores, as functions of porosity and of the material's nonlinearity parameter, namely strain rate sensitivity. An expression for densification kinetics is also obtained and compared with experimental data.  相似文献   

14.
The densification of SnO2 (0.9 mol)–Sb2O3 (0.1 mol) solid solution without any additives was studied by conventional and field-activated sintering technique (FAST). FAST sintering achieved a relative density value of 92.4% at 1163 K for 10 min versus 61.3% in conventional sintering at 1273 K for 3 h. An abnormal reduction of the IR transmittance and a semiconductor defect structure with only one donor level in the SnO2 energy gap were noticed in the FAST-sintered as compared with the conventionally sintered Sn0.82Sb0.18O2 solid solution. A high charge carrier concentration (i.e., electronic conduction) was shown in the FAST-sintered sample by conductivity measurements and the negative values of the Seebeck coefficient.  相似文献   

15.
Systematic microstructural statistics for 3 mol% yttria‐stabilized zirconia synthesized by both conventional sintering and flash sintering with AC and DC current were obtained. Within the gage section, flash sintered microstructures were indistinguishable from those synthesized by conventional sintering procedures. With both techniques, full densification was obtained. However, from both AC and DC flash sintered specimens, heterogeneous grain size distributions and residual porosity were observed in the proximity of the electrodes. After DC sintering, an almost 400 times increased average grain size was observed near cathode compared to the gage section, unlike areas close to the anode. Concepts of Joule heating alone were not sufficient to explain the experimental observations. Instead, the activation energy for grain growth close to the cathode is lowered considerably during flash sintering, hence suggesting that electrode effects can cause significant heterogeneities in microstructure evolution during flash sintering. Microstructural characterization further indicated that microfracturing during green‐pressing and variations in contact resistance between the electrodes and the ceramic may also contribute to grain size gradients and hence local variations of physical properties.  相似文献   

16.
In a WC–Co specimen, the shape of WC crystals was a triangular prism with truncated corners. When VC was added to inhibit grain growth, the crystal shape changed to a triangular prism without truncation. This shape change was related to the variation of edge energy, which has a significant influence on the coarsening process of WC grains.  相似文献   

17.
Pressureless Sintering of Boron Carbide   总被引:4,自引:0,他引:4  
B4C powder compacts were sintered using a graphite dilatometer in flowing He under constant heating rates. Densification started at 1800°C. The rate of densification increased rapidly in the range 1870°–2010°C, which was attributed to direct B4C–B4C contact between particles permitted via volatilization of B2O3 particle coatings. Limited particle coarsening, attributed to the presence or evolution of the oxide coatings, occurred in the range 1870°–1950°C. In the temperature range 2010°–2140°C, densification continued at a slower rate while particles simultaneously coarsened by evaporation–condensation of B4C. Above 2140°C, rapid densification ensued, which was interpreted to be the result of the formation of a eutectic grain boundary liquid, or activated sintering facilitated by nonstoichiometric volatilization of B4C, leaving carbon behind. Rapid heating through temperature ranges in which coarsening occurred fostered increased densities. Carbon doping (3 wt%) in the form of phenolic resin resulted in more dense sintered compacts. Carbon reacted with B2O3 to form B4C and CO gas, thereby extracting the B2O3 coatings, permitting sintering to start at ∼1350°C.  相似文献   

18.
A kinetic, Monte Carlo model, capable of simulating microstructural evolution sintering in a two-dimensional system of three particles, has been presented. The model can simulate several mechanisms simultaneously. It can simulate curvature-driven grain growth, pore migration and coarsening by surface diffusion, and densification by diffusion of vacancies to grain boundaries and annihilation of these vacancies. Morphologic changes and densification kinetics are used to verify the model.  相似文献   

19.
In this work, we investigate the effects of powder chemistry on the sintering of MgO‐doped specialty alumina. The stages at which MgO influences densification of Al2O3 were identified by comparing dilatometry measurements and the sintering kinetics of MgO‐free and MgO‐doped specialty alumina powders. MgO is observed to reduce the grain boundary thickness during densification using TEM. We show that MgO increases the solubility of SiO2 in alumina grains near the boundaries using EDS. First‐principles DFT calculations demonstrate that the co‐dissolution of MgO and SiO2 in alumina is thermodynamically favored over the dissolution of MgO or SiO2 individually in alumina. This study experimentally demonstrates for the first time that removal of SiO2 from the grain boundaries is a key process by which MgO enhances the sintering of alumina.  相似文献   

20.
Pulsed Electric Current Sintering of Silicon Nitride   总被引:1,自引:0,他引:1  
Pulsed electric current sintering (PECS) has been used to densify α-Si3N4 powder doped with oxide additives of Y2O3 and Al2O3. A full density (>99%) was achieved with virtually no transformation to β-phase, resulting in a microstructure with fine equiaxed grains. With further holding at the sintering temperature, the α-to-β phase transformation took place, concurrent with an exaggerated grain growth of a limited number of elongated β-grains in a fine-grained matrix, leading to a distinct bimodal grain size distribution. The average grain size was found to obey a cubic growth law, indicating that the growth is diffusion-controlled. In contrast, the densification by hot pressing was accompanied by a significant degree of the phase transformation, and the subsequent grain growth gave a broad normal size distribution. The apparent activation energy for the phase transformation was as high as 1000 kJ/mol for PECS, almost twice the value for hot pressing (∼500 kJ/mol), thereby causing the retention of α-phase during the densification by PECS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号