首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Protocols for microbial source tracking of fecal contamination generally are able to identify when a source of contamination is present, but thus far have been unable to evaluate what portion of fecal-indicator bacteria (FIB) came from various sources. A mathematical approach to estimate relative amounts of FIB, such as Escherichia coli, from various sources based on the concentration and distribution of microbial source tracking markers in feces was developed. The approach was tested using dilute fecal suspensions, then applied as part of an analytical suite to a contaminated headwater stream in the Rocky Mountains (Upper Fountain Creek, Colorado). In one single-source fecal suspension, a source that was not present could not be excluded because of incomplete marker specificity; however, human and ruminant sources were detected whenever they were present. In the mixed-feces suspension (pet and human), the minority contributor (human) was detected at a concentration low enough to preclude human contamination as the dominant source of E. coli to the sample. Without the semi-quantitative approach described, simple detects of human-associated marker in stream samples would have provided inaccurate evidence that human contamination was a major source of E. coli to the stream. In samples from Upper Fountain Creek the pattern of E. coli, general and host-associated microbial source tracking markers, nutrients, and wastewater-associated chemical detections—augmented with local observations and land-use patterns—indicated that, contrary to expectations, birds rather than humans or ruminants were the predominant source of fecal contamination to Upper Fountain Creek. This new approach to E. coli allocation, validated by a controlled study and tested by application in a relatively simple setting, represents a widely applicable step forward in the field of microbial source tracking of fecal contamination.  相似文献   

2.
In order to assess the fecal contamination of rivers in the Seine watershed through soil leaching, 78 small streams located in rural areas were sampled upstream from any wastewater outfall. Culturable fecal coliforms (FC) and beta-D-glucuronidase activity (specific of Escherichia coli) were measured in the samples. Data showed a significant correlation between both estimates of fecal contamination. In the two different areas of the Seine river watershed investigated, most of the small streams were significantly contaminated by fecal bacteria. In general, the streams flowing through areas partly or fully covered with pastures were more contaminated than those flowing through forest and cultivated areas. Rainfall increased the suspended solid content of small streams as well as their fecal contamination, as an important fraction of FC was adsorbed on particles. Calculations showed that, at a large watershed scale, the input of FC in rivers through soil leaching was very low when compared to the input through the discharge of treated domestic wastewater but this could not be true at local scale.  相似文献   

3.
Fecal contamination in stormwater is often complex. Because conventional fecal indicator bacteria (FIB) cannot be used to ascertain source of fecal contamination, alternative indicators are being explored to partition these sources. As they are assessed for future use, it is critical to compare alternative indicators to conventional FIB under a range of stormwater delivery conditions. In this study, conventional FIB and fecal Bacteroides spp. were monitored throughout the duration of five storm events from coastal stormwater outfalls in Dare County, North Carolina, USA to characterize relationships among FIB concentrations, alternative fecal markers, and loading of contaminants. Water samples were collected multiple times during each storm and analyzed for Enterococcus sp. and Escherichia coli using enzymatic tests and fecal Bacteroides spp. by QPCR. Both conventional FIB and fecal Bacteroides spp. concentrations in stormwater were generally high and extremely variable over the course of the storm events. Over the very short distances between sites, we observed statistically significant spatial and temporal variability, indicating that stormwater monitoring based on single grab-samples is inappropriate. Loading of FIB and fecal Bacteroides spp. appeared to be affected differently by various hydrologic factors. Specifically, Spearman correlations between fecal Bacteroides spp. and drainage area and antecedent rainfall were lower than those between conventional FIB and these hydrologic factors. Furthermore, the patterns of fecal Bacteroides spp. concentrations generally increased over the duration of the storms, whereas E. coli and Enterococcus sp. concentrations generally followed the patterns of the hydrograph, peaking early and tailing off. Given the greater source-specificity and limited persistence of fecal Bacteroides spp. in oxygenated environments, differences in these patterns suggest multiple delivery modes of fecal contamination (i.e. landscape scouring versus groundwater discharge).  相似文献   

4.
Wheeler Alm E  Burke J  Spain A 《Water research》2003,37(16):3978-3982
Potential fecal contamination of sand in the wave-washed zone of public bathing beaches is overlooked in beach monitoring programs. Activity in this zone can bring pathogens to the sand surface or into the water, presenting a health risk to sensitive populations. On a unit weight basis (colony forming units per 100g), the mean summer abundance of the fecal indicator bacteria enterococci and Escherichia coli was 3-38 times higher in the top 20 cm of wet-sand cores than in the water column at six freshwater bathing beaches. E. coli were 4 times more abundant than enterococci in water but counts were similar in the sand. A correlation (r=0.60) existed between E. coli counts in the water and in the top 5 cm of sand only, whereas no relationship existed between enterococci abundance in water and sand. In general, enterococci were most numerous in the 5-10 cm sand stratum and E. coli in the 0-5 cm stratum. These preliminary data show that wet freshwater beach sand is a reservoir of fecal indicator bacteria. Enteric pathogens may also be present in beach sand.  相似文献   

5.
Fluorometry identifies human fecal contamination by detecting optical brighteners in environmental waters. Because optical brighteners are sensitive to sunlight, we determined if we could improve fluorometry by exposing water samples to ultraviolet (UV) light to differentiate between optical brighteners and other fluorescing organic compounds. Optical brighteners were likely present when the relative percentage difference in fluorometric value of the water before and after UV light exposure was >30% (glass cuvettes, 30 min exposure) or >15% (polymethacrylate cuvettes, 5 min exposure). In a blind study, we correctly identified the presence or absence of optical brighteners in 178 of 180 (99%) of the samples tested with a more expensive field fluorometer and in 175 of 180 (97%) of the samples tested with a less expensive handheld fluorometer. In the field, the method correctly identified two negative and three positive locations for human fecal contamination. When combined with counts of fecal bacteria, the new fluorometric method may be a simple, quick, and easy way to identify human fecal contamination in environmental waters.  相似文献   

6.
The present communication summarizes and analyzes the results of an investigation conducted since 1977 in a section of South Windsor. Connecticut. A sanitary survey of drinking water wells in this area revealed that, out of 66 individual wells, 19 had counts of fecal and total coliforms in excess of what is recommended for potable water quality by guidelines set by the Public Health Code of the State of Connecticut. The data of this survey were subjected to lagged cross-correlation and spectral analysis in order to quantify spatial interactions between individual wells and, thus, to identify the pattern and the origin of contamination. Results indicated that there was a channeled flow of bacterial pollution through the study area with very little lateral diffusion. The study demonstrated that in some situations biological contaminants can travel large distances underground without substantial attenuation by the aquifer material.  相似文献   

7.
Drinking water supply companies monitor the presence of Escherichia coli in drinking water to verify the effectiveness of measures that prevent faecal contamination of drinking water. Data are lacking, however, on the sensitivity of the monitoring programmes, as designed under the EU Drinking Water Directive. In this study, the sensitivity of such a monitoring programme was evaluated by hydraulic model simulations of contamination events and calculations of the detection probability of the actual sampling programme of 2002. In the hydraulic model simulations of 16-h periods of 1l h(-1) ingress of untreated domestic sewage, the spread of the contamination through the network and the E. coli concentration dynamics were calculated. The results show that when large parts of the sewage reach reservoirs, e.g. when they originate from the treatment plant or a trunk main, mean detection probabilities are 55-65%. When the contamination does not reach any of the reservoirs, however, the detection probability varies from 0% (when no sampling site is reached) to 13% (when multiple sites are reached). Mean detection probabilities of nine simulated ingress incidents in mains are 5.5% with an SD of 6.5%. In reality, these detection probabilities are probably lower as the study assumed no inactivation or clustering of E. coli, 100% recovery efficiency of the E. coli detection methods and immediate mixing of contaminations in mains and reservoirs. The described method provides a starting point for automated evaluations and optimisations of sampling programmes.  相似文献   

8.
Plummer JD  Long SC 《Water research》2007,41(16):3716-3728
Watershed management programs often rely on monitoring for a large number of water quality parameters to define contaminant issues. While coliforms have traditionally been used to identify microbial contamination, these indicators cannot discriminate among potential contaminant sources. Microbial source tracking (MST) can provide the missing link that implicates the sources of contamination. The objective of this study was to use a weight-of-evidence approach (land use analysis using GIS, sanitary surveys, traditional water quality monitoring, and MST targets) to identify sources of pollution within a watershed that contains a raw drinking water source. For the study watersheds, statistical analyses demonstrated that one measure each of particulate matter (turbidity, particle counts), organic matter (total organic carbon, dissolved organic carbon, UV(254) absorbance), and indicator organisms (fecal coliforms, enterococci) were adequate for characterizing water quality. While these traditional parameters were useful for assessing overall water quality, they were not intended to differentiate between microbial sources at different locations. In contrast, the MST targets utilized (Rhodococcus coprophilus, sorbitol-fermenting Bifidobacteria, and male-specific coliphages) pinpointed specific sources of microbial pollution. However, these targets could not be used for routine monitoring due to a high percentage of non-detects.  相似文献   

9.
Microbial source tracking to distinguish between human, livestock and wildlife fecal pollution using molecular techniques is a rapidly evolving approach in many developed countries, but has not previously been applied on the African continent. DNA extracts from cow, donkey, and human fecal specimens and raw domestic sewage samples collected in Kenya were tested against five existing quantitative PCR assays designed to detect universal (2), human-specific (2), and cow-specific (1) fecal Bacteroidales genetic markers. Water samples from the River Njoro in Kenya were evaluated using the five tested Bacteroidales markers and a multi-species assay for Cryptosporidium in a preliminary exploration of fecal pollution sources and health risks in this watershed. Diagnostic sensitivity on the validation set varied from 18 to 100% for the five assays while diagnostic specificity was 100%. Of the 2 universal assays, Total Bacteroidales [Dick, L.K, Field, K.G., 2004. Rapid estimation of numbers of fecal Bacteroidetes by use of a quantitative PCR assay for 16S rRNA genes. Appl. Environ. Microbiol. 70, 5695-5697] showed lower generic fecal diagnostic sensitivity, at 55%, than BacUni-UCD, at 100%, in detecting fecal markers on the 42-sample validation set. Human-specific assay HF183 demonstrated 65% sensitivity overall, and 80% on the human sewage samples, compared to 18% overall and 0% sewage for human-specific assay BacHum-UCD. Cow-specific assay BacCow-UCD had 94% sensitivity. Testing of 18 water samples indicates cows are a likely predominant source of fecal contamination in the Njoro Watershed (78% prevailing rate). Probabilistic assessment of human assay results indicates at most three of the river water samples contained human Bacteroidales. Cryptosporidium spp. markers were detected in samples from nine of the 12 sampling locations. Evidence suggesting widespread contamination by cow feces and Cryptosporidium in the Njoro watershed raises serious concerns for human and animal health.  相似文献   

10.
Human-specific fecal bacteria in wastewater treatment plant effluents   总被引:1,自引:0,他引:1  
The objective of this study was to identify fecal bacteria able to persist after wastewater treatment and that could be used as indicators of human fecal contamination. In a first step, the diversity of Bacteroidales, Clostridiaceae, Bifidobacterium, and Bacillus-Streptococcus-Lactobacillus cluster (BSL) was analysed using a fingerprint technique (CE-SSCP) and 16S rDNA libraries in waters collected at the end of the treatment process in different urban wastewater treatment plants. For each group, dominant bacteria present in most effluents were identified. Their origin (human feces, animal feces, non-fecal) was then analysed based on data of their closest relatives in public 16S rDNA databases. Among fecal bacteria recovered in the treated effluents analysed, phylotypes close to Bifidobacterium adolescentis and Bacteroides caccae seem to be specific to human beings. Phylotypes gathering only sequences of human fecal origin were also identified among the BSL and Clostridiaceae, two bacterial groups which have been poorly investigated for bacterial source-tracking purpose. Since these bacteria were detected post-treatment in most wastewater treatment plants, they may constitute potential new indicators of fecal contamination specific to humans that could be used to track fecal contamination of surface water by sewage.  相似文献   

11.
Microbial contaminants in stormwater runoff have the potential to negatively impact public health. Stormwater runoff to coastal waters is increasing in amount and rate of discharge due to loss of vegetated landscape and increasing coastal development. However, the extent and nature of microbial contamination of stormwater runoff in North Carolina (NC) has not been previously characterized. The aim of this study was to measure a range of fecal indicator bacteria (FIB) and molecular markers at three coastal sites. E. coli and Enterococcus sp. were measured in addition to molecular markers including Bacteroides Human-Specific Marker (HS) and fecal Bacteroides spp. Levels of FIB in stormwater far exceeded recreational water quality guidelines, frequently by several orders of magnitude. High concentrations of fecal Bacteroides spp. and the presence of HS indicated the presence of human fecal contamination in the stormwater runoff, but only during specific storms. Examinations of levels of fecal contamination in stormwater over multiple seasons and a range of storm conditions will allow managers to consider appropriate design of effective mitigation strategies necessary to maintain and restore coastal water quality.  相似文献   

12.
Microbial source tracking (MST) is a procedure used to determine the relative contributions of humans and animals to fecal microbial contamination of surface waters in a given watershed. Studies of MST methodology have focused on optimizing sampling, laboratory, and statistical analysis methods in order to improve the reliability of determining which sources contributed most to surface water fecal contaminant. The usual approach for estimating a source distribution of microbial contamination is to classify water sample microbial isolates into discrete source categories and calculate the proportion of these isolates in each source category. The set of proportions is an estimate of the contaminant source distribution. In this paper we propose and compare an alternative method for estimating a source distribution—averaging posterior probabilities of source identity across isolates. We conducted a Monte Carlo simulation covering a wide variety of watershed scenarios to compare the two methods. The results show that averaging source posterior probabilities across isolates leads to more accurate source distribution estimates than proportions that follow classification.  相似文献   

13.
The Loch Katrine water supply to Glasgow was unfiltered until a new treatment works was completed in 2007. Disinfection observations on the unfiltered supply are reported here for the decade 1995–2004. On one half of the supply, raw water contamination by gulls led to annual final water microbiological failure rates up to 2.7%, which fell below 0.4% after introducing revised gull control measures. Seasonality in gull contamination contributed to marked seasonality in observed final water microbiological failure rates. A 14‐min chlorine contact time at pH 5.8 realised all the effective disinfection; a longer second stage contact time at pH 8.6 provided no significant (P > 0.05) improvement. For a range of raw water Escherichia coli counts, a logistic regression model predicted probabilities of a final water E. coli failure that varied with quarterly period; this was consistent with seasonal factors, aside from raw water quality, contributing to probability of these failures.  相似文献   

14.
Marine recreational beaches are monitored for fecal contamination by Enterococcus spp. (ENT) counts. Although different ENT species in the environment tend to thrive in and originate from distinct hosts, the current monitoring method does not differentiate among species. Time-consuming isolation-based species identification precludes routine analysis of environmental ENT communities. Therefore, an isolation-independent DNA fingerprinting method was developed to characterize environmental ENT communities using DNA length polymorphism of the spacer region between the groES and groEL genes common to most ENT species. Capillary electrophoresis resulted in distinct peak sizes of PCR products that carried polymorphic groESL spacers (300-335 bp in length) among 8 different ENT species (Enterococcus avium, Enterococcus gallinarum, Enterococcus casseliflavus, Enterococcus mundtii, Enterococcus hirae, Enterococcus faecium, Enterococcus durans, and Enterococcus faecalis). Distortions in true species ratios observed in electropherograms were caused by PCR biases arising in a mixed ENT community DNA template. E. faecalis was overestimated and E. avium and E. faecium were underestimated compared to the original species ratios in the mixed community. The PCR product bias was constant between species, so good approximation of the species ratio in ENT communities is possible. In environmental samples, a high percentage of E. faecalis (96%) together with high total ENT counts were observed in samples collected from a sewer line and from several sites in a storm drain system where sewage leaks were suspected. In contrast, samples with <400 CFU 100 ml−1 ENT were either dominated by E. mundtii or had 4 or more ENT species. The latter ENT community profiles are considered to be signatures of enterococci rarely associated with animals with low or of non-fecal origin.  相似文献   

15.
Wastewater treatment results in the production of large quantities of sludge. Agricultural use is an interesting alternative provided that the health risks are taken into account. In France, a decree (1998) defines "sanitized" sludge as sludge that has been treated so that pathogens (Salmonella, enteroviruses, viable nematode eggs) are no longer detectable. The aim of this study was to determine the impact of various sludge treatments on 2 types of pathogens (Salmonella and nematode eggs). We also assessed the levels of micro-organisms that indicate faecal contamination (E. coli, Enterococci, sulfite-reducing anaerobes spores). Various treatment processes were analyzed: 4 biological, 3 chemical, 1 heat, 2 storage and 4 sampling campaigns were carried out. Concerning the parasitological contamination of sludge at the entrance of all sites, concentrations of total nematode eggs and viable nematode eggs were highly heterogeneous (respectively, from 2 to 53 eggs/10 g DM and from 2 to 45 eggs/10 g DM) with viable eggs present in all samples. The total concentration of nematode eggs in the sludge was not greatly affected by treatment or storage, and was in the range < 1-66 eggs/10 g DM. However, the situation was different for mean viable egg counts. For four treatments, no viable eggs were detected. Mesophilic processes are inefficient at eliminating viable nematode eggs. Salmonella were systematically detected in all sludge samples at the entry to the station, except for limed sludge intended for storage. At the end of four treatments Salmonella had been totally eliminated. For the fecal contamination indicators, the largest decrease in E. coli contamination was observed following liming and after thermophilic treatment. The mesophilic treatments resulted in very small decreases in contamination. A similar pattern was observed with Enterococci. For the spores of sulfite-reducing anaerobe bacteria, with the exception of heat treatment, which reduced contamination by 3.2 log units, the maximum decrease in contamination was 1.7 log. For storage of sludge, E. coli and Enterococci levels had decreased at first but then increased between 6 and 8 months of storage.  相似文献   

16.
This study aimed to investigate the impact of small tributaries on seawater and shellfish quality in coastal area subjected to brief episodes leading to fecal contamination. Escherichia coli and F-RNA-specific bacteriophages were selected as fecal indicators and astroviruses were chosen as being representative of pathogens in the human population during winter viral epidemics. A two-dimensional hydrodynamic model was built to simulate the current and dispersion in the model domain, which includes areas uncovered at low tide. The model also includes decay rates to simulate microorganism behavior and assess the influence of fecal input on shellfish quality. The originality lies in the fact that specific features of the study area were considered. Modeling results indicate limited particle movements and long flushing times at the back of the bay, where shellfish are farmed. Computational results showed that under normal conditions, i.e. 94% of the time, when rainfall was less than 10 mm per day, the sector shows acceptable water quality. These results are in agreement with shellfish concentration measured in the field. Under high flow conditions, high concentrations of fecal indicators and astrovirus were measured in the river and tributaries. The corresponding fluxes were over 50 times higher than under normal weather conditions. The location of the shellfish beds near the coast makes them vulnerable and fecal indicators and viruses were detected in shellfish after short rainfall events. Our modeling approach makes a contribution to shellfish management and consumer protection, by indicating the "risk period" as defined by EU regulations. Molecular development such as viral quantification in conjunction with model developments will help to prevent shellfish contamination and thus provide safer products to consumers and an effective tool for shellfish producers.  相似文献   

17.
B. Fremaux 《Water research》2009,43(19):4838-900
Our ability to identify and eliminate fecal contamination of water, now and in the future, is essential to reduce incidences of waterborne disease. Bacterial source tracking is a recently developed approach for identifying sources of fecal pollution. PCR primers designed by Bernhard and Field [Bernhard, A.E., Field, K.G., 2000a. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl. Environ. Microbiol. 66(10), 4571-4574] and Dick et al. [Dick, L.K., Bernhard, A.E., Brodeur, T.J., Santo Domingo, J.W., Simpson, J.M., Walters, S.P., Field, K.G., 2005. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl. Environ. Microbiol. 71(6), 3184-3191] for the detection of human (HF183), pig (PF163) and ruminant (CF128) specific Bacteroidales 16s rRNA genetic markers were tested for their suitability in detecting fecal pollution in Saskatchewan, Canada. The sensitivity and specificity of these primers were assessed by testing eight raw human sewage samples and 265 feces from 12 different species in Saskatchewan. The specificity of each primer set was ≥94%. The accuracy of HF183 and PF163 to distinguish between the different species was 100%, whereas CF128 cross-reacted with 22% of the pig feces. Occurrence of the host-specific Bacteroidales markers and the conventional indicator Escherichia coli in relation to several enteropathogens was investigated in 70 water samples collected from different sites along the Qu'Appelle River (Saskatchewan, Canada). Human and ruminant fecal markers were identified in 41 and 14% of the water samples, respectively, whereas the pig marker was never detected in the river water. The largest concentrations in E. coli counts were concomitant to the simultaneous detection of HF183 and CF128. Thermotolerant Campylobacter spp., Salmonella spp. and Shiga toxin genes (stx1 and stx2)-positive E. coli (STEC) were detected in 6, 7 and 63% of the water samples, respectively. However, none of the stx positive water samples were positive for the E. coli O157:H7 gene marker (uidA). Odds ratios analysis suggests that CF128 may be predictive for the presence of Salmonella spp. in the river investigated. None of the fecal indicators were able to confidently predict the presence of thermotolerant Campylobacter spp. and STEC.  相似文献   

18.
Coliform bacteria have long been used to indicate fecal contamination of water and thus a health hazard. In this study, the in-mill water and external effluent treatment systems of seven typical Canadian pulp and paper mills were all shown to support the growth of numerous coliforms, especially Klebsiella Spp., Escherichia coli. Enterobacter spp., and Citrobacter spp. In all mills and most sampled locations, klebsiellas were the predominant coliforms. Although all but one of the mills had no sewage input and most disinfected their feed (input) water, all contained the most typical fecal indicator bacterium, E. coli. Many of the mill coliforms were classified as fecal coliforms by standard "MPN" and metabolic tests, but this was shown to be due to their thermotolerance, not their origin. Mill coliforms were shown not to be just simple transients from feedwater or furnish (wood), but to be continuously growing, especially in some of the primary clarifiers. Isolated mill coliforms grew very well on a sterilized raw combined mill effluent. The fecal streptococci (enterococci), alternative indicators of fecal health hazards, were common in all mills in the absence of sewage. Ten strains of E. coli isolated from four mills were all shown to be non-toxigenic strains of harmless serotypes. No salmonellas were found. Therefore, the use of total coliform, fecal coliform, enterococci, or E. coli counts as indicators of fecal contamination, and thus of health hazard in pulp and paper mill effluents or biosolids (sludges) known to be free of fecal input is invalid.  相似文献   

19.
Concentrations of fecal indicator bacteria (FIB; e.g. Escherichia coli, and Enterococcus sp.) can only be used in limited ways for determining the source of fecal contamination in recreational waters because they cannot distinguish human from non-human fecal contamination. Several Bacteroides spp. have been suggested as potential alternative indicators. We have developed a rapid, culture-independent method for quantifying fecal Bacteroides spp. using quantitative PCR (QPCR) targeting the 16S rRNA gene. The assay specifically targets and quantifies the most common human Bacteroides spp. The details of the method are presented, including analyses of a wide range of fecal samples from different organisms. Specificity and performance of the QPCR assay were also tested via a laboratory experiment where human sewage and gull guano were inoculated into a range of environmental water samples. Concentrations of fecal Bacteroides spp., total Enterococcus sp., Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus were measured using QPCR, and total Enterococcus sp. and E. coli were quantified by membrane filtration (MF). Samples spiked with gull guano were highly concentrated with total Enterococcus sp., E. coli, E. faecalis, and E. casseliflavus, demonstrating that these indicators are prominent in animal feces. On the other hand, fecal Bacteroides spp. concentrations were high in samples containing sewage and were relatively low in samples spiked with gull guano. Sensitivity and specificity results suggest that the rapid fecal Bacteroides spp. QPCR assay may be a useful tool to effectively predict the presence and concentration of human-specific fecal pollution.  相似文献   

20.
Occurrence and prevalence of different bacterial enteric pathogens as well as their relationships with conventional (total and fecal coliforms) and alternative fecal indicators (host-specific Bacteroides 16S rRNA genetic markers) were investigated for various water samples taken from different sites with different degrees of fecal contamination. The results showed that a wide range of bacterial pathogens could be detected in both municipal wastewater treatment plant samples and in surface water samples. Logistic regression analysis revealed that total and human-specific Bacteroides 16S rRNA genetic markers showed significant predictive values for the presence of Escheriachia coli O-157, Salmonella, heat-labile enterotoxin (LT) of enterotoxigenic E. coli (ETEC), and heat-stable enterotoxin for human (STh) of ETEC. The probability of occurrence of these pathogenic bacteria became significantly high when the concentrations of human-specific and total Bacteroides 16S rRNA genetic markers exceeded 10(3) and 10(4) copies/100 mL. In contrast, Clostridium perfringens was detected at high frequency regardless of sampling sites and levels of Bacteroides 16S rRNA genetic markers. No genes related to Shigella spp., Staphylococcus aureus and Vibrio cholerae were detected in any samples analyzed in this study. Conventional indicator microorganisms had low levels of correlation with the presence of pathogens as compared with the alternative fecal indicators. These results suggested that real-time PCR-based measurement of alternative Bacteroides 16S rRNA genetic markers was a rapid and sensitive tool to identify host-specific fecal pollution and probably associated bacterial pathogens. However, since one fecal indicator might not represent the relative abundance of all pathogenic bacteria, viruses and protozoa, combined application of alternative indicators with conventional ones could provide more comprehensive pictures of fecal contamination, its source and association with pathogenic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号