首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
无机材料纳米空心球的制备方法研究进展   总被引:10,自引:0,他引:10  
探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一.纳米空心球作为一种新的纳米结构,其特有的核-壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能,从而在医学、制药学、材料学、染料工业等领域具有很好的应用前景.本文综述了模板法和由模板法发展而来的L-bL自组装法制备无机材料纳米空心球的一般过程及原理,最后展望了纳米空心球材料的发展前景,并探讨了目前在无机材料纳米空心球研究领域中存在的问题.  相似文献   

2.
纳米电缆材料的研究进展   总被引:1,自引:0,他引:1  
纳米电缆材料因其独特的光学性能、电学性能、磁学性能及几何结构而成为当今纳米材料研究领域的热点和重点.介绍了纳米电缆的研究进展、纳米电缆的结构和制备技术的发展状况,详细阐述了电弧放电、化学气相沉积、毛细管虹吸等多种制备方法,并展望了纳米电缆的发展和应用前景,纳米电缆的研究对于以纳米材料为基础而构筑的微纳米器件有着重要的意义.  相似文献   

3.
贾嘉 《功能材料》2004,35(Z1):3201-3204
纳米复合薄膜材料由于具有传统复合材料和现代纳米材料两者的优点,成为重要的前沿研究领域之一.其中半导体纳米复合材料,尤其是硅系纳米复合薄膜,由于具有独特的光电性能,加之与集成电路相兼容的制备技术,有着广泛的应用前景.近年来关于纳米复合薄膜的研究不断深入,但仍有许多问题没有完全解决.本文围绕硅系纳米复合薄膜的材料特点,说明了等离子体化学气相沉积(PCVD)技术的工作原理和装置结构,以及该技术在硅系纳米复合薄膜制备中的独特优点.并以氮化硅薄膜为重点,介绍纳米复合薄膜材料的PCVD制备技术.文章最后对硅系纳米复合薄膜的在光电技术等各个领域的应用前景做了一些展望.  相似文献   

4.
高能球磨法制备纳米材料   总被引:2,自引:0,他引:2  
本文系统地综述了用高能球磨法制备纳米晶材料的国内外现状。通过微观结构和性能方面的比较,发现用机械球磨方法制备的纳米晶与原子沉积法获得的材料具有相似的结构和性质。该方法工艺简单,近年来已成为制备纳米材料的一条重要途径。如可用于制备纳米结构的纯金属,金属间化合物,不互溶体系合金,氧化物弥散强化金属复合材料等。  相似文献   

5.
梁兴  高国华 《材料导报》2015,29(13):1-11, 33
V2O5具有独特的层状结构,适合于锂离子的存储,与传统的锰酸锂、钴酸锂、磷酸铁锂等阴极材料相比,表现出高的理论比容量和功率密度,作为锂离子电池阴极材料备受青睐。但它自身的结构不稳定、电导率低,导致实际比容量远低于理论值,且循环稳定性不能长期维持。正是由于这些制约因素,V2O5作锂离子电池阴极材料还有很大的研究价值。而利用各种制备方法将V2O5制备成具有各种纳米结构的材料,如一维的纳米线、纳米管等,二维的纳米片,三维的纳米空心球、纳米花等,改善材料固有的形貌结构,增大比表面积,增强锂离子在电极材料中的嵌入/脱出性能,提高储锂能力和比容量,同时通过掺杂改性等方法增强材料的导电性和循环稳定性,使V2O5作为锂离子电池阴极材料表现出优异的电化学性能成为可能。介绍了V2O5的晶体结构及其作为电极材料的纳米结构,以及不同的纳米结构对电极材料电化学性能的影响。  相似文献   

6.
锂离子电池纳米负极材料的研究和开发   总被引:1,自引:0,他引:1  
锂离子电池近几年发展非常迅速,纳米材料和纳米技术也应用于锂离子电池中。本文综述纳米材料(主要包括纳米金属及纳米合金、纳米氧化物、碳纳米管、具有纳米孔结构的无定形碳材料和天然石墨等)在负极材料方面的最新研发情况。纳米材料的特有性能使其可逆容量高于目前商品化的负极材料,但纳米合金负极材料的产业化还有待于进一步的研究。特别是循环稳定性;碳纳米管的制备和纯化成本过高,不宜产业化,同时理论方面有待于进一步研究,以提高其电化学性能;具有纳米孔的无定形碳材料制备温度低,容量也较高,但是对于产业化而言,循环性能和电压滞后现象有待于进一步的改进;具有纳米孔的天然石墨负极材料不仅容量高、制备比较简单、成本低,而且具有良好的循环性能,可望达到产业化要求。  相似文献   

7.
纳米晶材料的研究及其进展   总被引:1,自引:0,他引:1  
纳米晶材料是纳米材料研究领域中的热点之一。本文对纳米晶材料的制备方法、表征、结构、性能及其应用进行了综述。  相似文献   

8.
新型纳米氧化铜不同于常规氧化铜,具有新颖的形貌和结构,其中包括氧化铜纳米颗粒、氧化铜纳米棒、氧化铜纳米片和氧化铜纳米梭等.新型纳米氧化铜具有优异的物理和化学性质,在众多领域里显示出广阔的应用前景,如应用于生物医药、传感器和催化材料等领域.纳米氧化铜的常规制备方法包括溶剂热法、热解法、微波法和磁控溅射法等.制备新型氧化铜纳米材料及其应用研究已经成为纳米材料领域的研究前沿和热点之一.本文综述了新型纳米氧化铜的制备以及应用的研究进展,探讨了该研究领域亟待解决的问题以及今后可能的发展前景.  相似文献   

9.
付磊  林莉  罗云蓉  谢文玲  王清远  李辉 《材料导报》2021,35(3):3114-3121
利用严重塑性变形以及电沉积等方法制备的块体纳米晶、超细晶材料具有优越的力学性能以及独特的物理化学性能,但其韧性和抗应变局域化能力显著降低,加工硬化能力消失.块体纳米晶、超细晶材料由于具有较高的强度,能有效抑制疲劳裂纹萌生,从而有效提高应力控制循环载荷作用下的高周疲劳性能,但其塑性差,缩短了应变控制作用下的低周疲劳寿命.事实上,工程结构疲劳失效往往起源于材料表面,在循环载荷作用下,疲劳裂纹通常从材料表面萌生并向内部扩展.因此,优化材料表面微观组织结构和性能有利于提高其服役寿命.为此,近年来,人们通过开发一些新颖的表面改性方法来制备梯度纳米结构材料,这些方法也被称为表面自纳米化.与其他传统的表面改性技术相比,利用表面纳米化技术在金属材料表面制备梯度纳米结构表层,所得纳米结构表层具有硬度高、表面粗糙度小以及梯度层厚等特点.梯度纳米结构材料表层由纳米晶构成,而芯部仍然保持未变形粗晶基体结构,晶粒尺寸由表及里逐渐从纳米尺度变化到微米尺度,这一特殊的材料构筑形式使其具有优越的抗高、低周疲劳性能.目前,关于梯度纳米结构材料的力学性能,尤其是疲劳性能的研究已经成为该领域的一大研究热点,许多工程实际应用都得益于这一领域的研究成果,然而,目前尚缺乏文献系统总结这一研究成果.为此,本文系统总结了近年来关于梯度纳米结构材料疲劳性能研究的最新进展,对影响其疲劳性能的因素进行了深入分析,对梯度纳米结构材料疲劳性能研究所面临的许多亟待解决的基础科学问题进行了讨论和展望,为梯度纳米结构材料在这一工程领域的应用提供借鉴.  相似文献   

10.
聚合物/无机物纳米复合材料研究现状   总被引:4,自引:0,他引:4  
纳米材料是继单组分材料,复合材料和梯度材料之后的第四代材料,聚合物/无机物纳米复合材料的研究已成为当今高分子化学与物理,无机化学和材料化学等诸多交叉学科的前沿领域,聚合物和无机物在纳米及分子水平上的复合,将使各自的优势得到最充分的体现,简要概述了聚合物/无机物纳米复合材料的制备方法,结构与性能及其应用。  相似文献   

11.
PbX(X=S,Se)纳米结构材料的制备方法   总被引:1,自引:1,他引:0  
PbX(X=S,Se)纳米结构材料因其良好的光电性能,在太阳能电池等方面有着较好的应用前景,目前已成为半导体领域的研究热点.概括和总结了几种制备PbX纳米材料的经典和新型方法,其中包括水热法、溶剂热法、化学气相沉积法、中孔材料模板法、熔盐籽晶法、纳米晶的取向附属物法和微波法等,并分析和讨论了各方法的特点及对应产物的特征.  相似文献   

12.
一维纳米结构材料研究进展   总被引:1,自引:0,他引:1  
曹敏花  郭彩欣  杨宇  胡长文 《功能材料》2004,35(Z1):2731-2735
一维纳米材料在纳米电子学、纳米光电子学、超高密度存储和扫描探针显微镜等领域具有潜在的应用前景,已成为21世纪材料领域研究的热点.本文介绍了一维纳米材料的特性和制备方法,并阐述了一维纳米材料的应用状况和前景,以及国内外在一维纳米材料方面的研究进展.  相似文献   

13.
Ag纳米材料具有独特的光学性、高导电性、高催化性和高抗菌性,在光电、催化及抗菌等领域中占有重要地位,而纳米Ag各种优异性能依赖于其尺寸、形貌和结构等.因此,纳米Ag可控制备的研究成为热点.按照粒子维度,将纳米Ag分为零维、一维和二维结构,对不同结构Ag纳米材料的合成方法及研究现状做简要概述,并总结Ag纳米材料的应用进展.  相似文献   

14.
稀土纳米材料的研究进展   总被引:1,自引:0,他引:1  
洪广言 《功能材料》2004,35(Z1):2639-2642
稀土纳米材料的研究与应用将有助于发现新性质,开拓新材料,已成为当前的研究热点.本文简述了稀土纳米粉体、稀土纳米薄膜、稀土纳米陶瓷和纳米复合与组装的研究进展,介绍了在磁性材料、发光材料、催化剂、光学材料等领域稀土纳米材料的应用和进展.  相似文献   

15.
碳材料是自然界中与人类关系最为密切的重要材料之一,伴随着纳米科技的发展,具有纳米结构的功能碳材料的研究逐渐深入,已经出现了石墨烯、碳纳米管等性能优异的纳米碳材料。纳米碳材料具有机械强度高、导热导电能力强等诸多优点以及环境友好特性,能够满足绿色化学和可持续性发展的要求,因而其在复合材料中的应用成为相关领域的研究热点。纳米碳材料的引入可以显著提高复合材料的性能,并且还可以赋予材料新的性能,其在功能复合材料方面有良好的应用前景。然而,由于纳米碳材料自身的结构特点,其在溶剂和聚合物基体中的分散性、相容性和稳定性较差,这一直阻碍着其性能在复合材料中的发挥,甚至可能导致材料的整体性能降低。因此,提高纳米碳材料的分散能力和使用性能一直是研究的难点和热点。通过化学的方法提高纳米碳材料的分散能力,操作过程复杂,生产成本增加,且化学品试剂大多具有很强的毒性。近年来,纳米碳材料的辐射改性受到各界广泛的重视,利用辐射技术制备和官能化修饰纳米碳材料,可以显著提高纳米碳材料的分散能力和与基体的相容性。辐射刻蚀和还原技术用于纳米碳材料的制备时,可对其结构进行设计,例如辐射制备短切碳纳米管,降低了碳纳米管的长度,可有效提高分散能力。利用高能射线还可将氧化石墨烯进行还原,提供简单高效制备石墨烯的新方法和新思路。辐射接枝可用于纳米碳材料的表面修饰,例如在碳纳米管或石墨烯表面接枝聚合含碳碳双键的酯和芳香类聚合物,提高了纳米碳材料在溶剂和聚合物基体中的分散性能,有助于制备各种高性能功能材料。本文综述了近年来辐射技术在碳纳米管、氧化石墨烯及碳纳米纤维等材料改性及其应用方面的研究进展,总结了这三种纳米碳材料的优异性能及其复合材料在生物医药、能源、智能材料等领域的最新研究进展,分析了辐射改性纳米碳材料的优势,并对今后辐射技术和纳米碳材料相结合的研究方向进行了展望。随着对纳米碳材料辐射改性的研究和产业化的不断深入,分散性能优异的纳米碳材料有望实现大规模低成本的连续批量生产,未来在功能化和高性能化复合材料等领域的应用也将会更加广阔。  相似文献   

16.
以CaCl2和Na2CO3为反应物,十二烷基硫酸钠(SDS)为表面活性剂,在室温水溶液中制备了纳米结构碳酸钙空心球.用TEM和SEM对其进行形貌观察发现,所制备的碳酸钙空心球的球壁由纳米粒子组成,具有多孔形貌特征.分别在模拟胃液(pH=1.2)以及模拟肠液(pH=7.4)中对制备的纳米结构碳酸钙空心球进行了药物装载和缓释性能的研究,选用的药物为布洛芬(IBU).研究结果表明,IBU/CaCO3多孔空心微球药物传输体系具有较高的药物装载量和良好的药物缓释性能,纳米结构碳酸钙空心球中IBU的装载量可以达到195mg/g,且连续释药时间能持续53h以上;除去表面活性剂后,载体中IBU的装载量可达到130mg/g,药物释放率为100%时,持续释药时间可达到40h.纳米结构碳酸钙多孔空心球作为药物载体材料在药物缓释体系中具有潜在的应用前景.  相似文献   

17.
新型纳米结构炭材料的储氢研究   总被引:10,自引:2,他引:8  
氢能是一种清洁的可再生能源。由于传统的储氢材料和储氢技术达不到氢燃料电池电动车的实用要求,储氢问题已成为氢能应用中最急需解决的关键问题。近年来,各种新型纳米结构炭材料的储氢已成为国际上的一个研究热点,引起了人们的广泛关注。但在这一研究领域中一直存在着许多争议和很大的分歧。通过综述国内外近几年来各种新型纳米结构炭材料如单壁碳纳米管、多壁碳纳米管、石墨纳米纤维以及炭纳米纤维等的储氢研究进展,指出了这一领域中需要解决的问题如储氢测试方法的标准化、纳米结构炭材料的评价以及储氢机制和吸附位的研究等。  相似文献   

18.
一维硅纳米材料的研究进展   总被引:3,自引:0,他引:3  
作为微电子领域最重要的半导体材料,硅的一维纳米结构在器件组装、纳米尺寸磁性器件、光电子等领域具有重要的作用,已经成为国际上材料科学研究的一个热点.从制备方法、应用前景等方面综述了国际上关于纳米硅丝和纳米硅管的研究进展,并提出今后的研究方向.  相似文献   

19.
纳米材料研究的新进展及在21世纪的战略地位   总被引:45,自引:4,他引:45  
在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术、新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米…  相似文献   

20.
纳米材料制备研究的若干新进展   总被引:40,自引:0,他引:40  
综述了纳米材料领域在纳米金属(或合金)粉末、纳米管和纳米纤维(纳米棒)、纳米材料的自组装、纳米半导体材料以及纳米复合材料等制备方面的最新进展,并对一些新方法相对于一般纳米材料制备方法的优点进行了比较.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号