首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Black phosphorus (BP) possesses unique physical properties and, owing to its intrinsic instability, the proper surface and chemical coordination is the key point in many applications. Herein, a facile and efficient surface lanthanide‐coordination strategy based on lanthanide (Ln) sulfonate complexes is designed to passivate and functionalize different BP‐based nanostructures including quantum dots, nanosheets, and microflakes. By means of Ln–P coordination, the lone‐pair electrons of phosphorus are occupied, thus preventing oxidation of BP, and the LnL3@BP exhibits excellent stability in both air and water. Furthermore, accompanied by the original photothermal performance of BP nanostructures, the Gd‐coordinated BP has high R1 relativities in magnetic resonance (MR) imaging, and other Ln (Tb, Eu, and Nd) coordinated BP structures exhibit fluorescence spanning the visible to near‐infrared regions. Not only is LnL3 surface passivation an efficient method to enhance the stability of BP, but also the MR or fluorescence derived from lanthanide ions extends the application of BP to optoelectronics and biomedical engineering.  相似文献   

3.
Black phosphorus (BP), a burgeoning elemental 2D semiconductor, has aroused increasing scientific and technological interest, especially as a channel material in field‐effect transistors (FETs). However, the intrinsic instability of BP causes practical concern and the transistor performance must also be improved. Here, the use of metal‐ion modification to enhance both the stability and transistor performance of BP sheets is described. Ag+ spontaneously adsorbed on the BP surface via cation–π interactions passivates the lone‐pair electrons of P thereby rendering BP more stable in air. Consequently, the Ag+‐modified BP FET shows greatly enhanced hole mobility from 796 to 1666 cm2 V?1 s?1 and ON/OFF ratio from 5.9 × 104 to 2.6 × 106. The mechanisms pertaining to the enhanced stability and transistor performance are discussed and the strategy can be extended to other metal ions such as Fe3+, Mg2+, and Hg2+. Such stable and high‐performance BP transistors are crucial to electronic and optoelectronic devices. The stability and semiconducting properties of BP sheets can be enhanced tremendously by this novel strategy.  相似文献   

4.
5.
As a new kind of 2D material, black phosphorus has gained increased attention in the past three years. Although few‐layered black phosphorus nanosheets (BPs) degrade quickly under ambient conditions to phosphate anions, which greatly hampers their optical and electronic applications, this property also makes BPs highly biocompatible and biodegradable, and is regarded as an advantage for various biomedical applications. This Concept summarizes the state‐of‐art progresses of BPs, from fabrication and surface modification to biomedical applications. It is expected that BPs with such fascinating properties will encourage more scientists to engage in expanding its biomedical applications by tackling the scientific challenges involved in their development.  相似文献   

6.
7.
A 2D black phosphorus/platinum heterostructure (Pt/BP) is developed as a highly efficient photocatalyst for solar‐driven chemical reactions. The heterostructure, synthesized by depositing BP nanosheets with ultrasmall (≈1.1 nm) Pt nanoparticles, shows strong Pt–P interactions and excellent stability. The Pt/BP heterostructure exhibits obvious P‐type semiconducting characteristics and efficient absorption of solar energy extending into the infrared region. Furthermore, during light illumination, accelerated charge separation is observed from Pt/BP as manifested by the ultrafast electron migration (0.11 ps) detected by a femtosecond pump‐probe microscopic optical system as well as efficient electron accumulation on Pt revealed by in situ X‐ray photoelectron spectroscopy. These unique properties result in remarkable performance of Pt/BP in typical hydrogenation and oxidation reactions under simulated solar light illumination, and its efficiency is much higher than that of other common Pt catalysts and even much superior to that of conventional thermal catalysis. The 2D Pt/BP heterostructure has enormous potential in photochemical reactions involving solar light and the results of this study provide insights into the design of next‐generation high‐efficiency photocatalysts.  相似文献   

8.
9.
The rise of black phosphorus (BP) as a new family member of two‐dimensional (2D) materials brings new concepts and applications to the field, because of the infrared band gap and anisotropic properties of such materials. Among many excellent properties of BP, the optical property attracts special attention in recent years. Optical methods have been widely and successfully used in characterizing BP, not only to obtain the structural information (such as thickness and crystalline orientation), but also to probe the fundamental properties of BP in terms of the behavior of electrons, phonons, excitons etc. In this Review, a comprehensive understanding about the optical characterization of BP such as Raman, absorption, and photoluminescence is presented. Also, the unique optical properties and applications explored in recent years are reviewed.  相似文献   

10.
11.
12.
Few‐layer black phosphorous (BP) has emerged as a promising candidate for next‐generation nanophotonic and nanoelectronic devices. However, rapid ambient degradation of mechanically exfoliated BP poses challenges in its practical deployment in scalable devices. To date, the strategies employed to protect BP have relied upon preventing its exposure to atmospheric conditions. Here, an approach that allows this sensitive material to remain stable without requiring its isolation from the ambient environment is reported. The method draws inspiration from the unique ability of biological systems to avoid photo‐oxidative damage caused by reactive oxygen species. Since BP undergoes similar photo‐oxidative degradation, imidazolium‐based ionic liquids are employed as quenchers of these damaging species on the BP surface. This chemical sequestration strategy allows BP to remain stable for over 13 weeks, while retaining its key electronic characteristics. This study opens opportunities to practically implement BP and other environmentally sensitive 2D materials for electronic applications.  相似文献   

13.
From a fundamental science perspective, black phosphorus (BP) is a canonical example of a material that possesses fascinating surface and electronic properties. It has extraordinary in‐plane anisotropic electrical, optical, and vibrational states, as well as a tunable band gap. However, instability of the surface due to chemical degradation in ambient conditions remains a major impediment to its prospective applications. Early studies were limited by the degradation of black phosphorous surfaces in air. Recently, several robust strategies have been developed to mitigate these issues, and these novel developments can potentially allow researchers to exploit the extraordinary properties of this material and devices made out of it. Here, the fundamental chemistry of BP degradation and the tremendous progress made to address this issue are extensively reviewed. Device performances of encapsulated BP are also compared with nonencapsulated BP. In addition, BP possesses sensitive anisotropic photophysical surface properties such as excitons, surface plasmons/phonons, and topologically protected and Dirac semi‐metallic surface states. Ambient degradation as well as any passivation method used to protect the surface could affect the intrinsic surface properties of BP. These properties and the extent of their modifications by both the degradation and passivation are reviewed.  相似文献   

14.
15.
16.
17.
The incident and scattered light engaged in the Raman scattering process of low symmetry crystals always suffer from the birefringence‐induced depolarization. Therefore, for anisotropic crystals, the classical Raman selection rules should be corrected by taking the birefringence effect into consideration. The appearance of the 2D anisotropic materials provides an excellent platform to explore the birefringence‐directed Raman selection rules, due to its controllable thickness at the nanoscale that greatly simplifies the situation comparing with bulk materials. Herein, a theoretical and experimental investigation on the birefringence‐directed Raman selection rules in the anisotropic black phosphorus (BP) crystals is presented. The abnormal angle‐dependent polarized Raman scattering of the Ag modes in thin BP crystal, which deviates from the normal Raman selection rules, is successfully interpreted by the theoretical model based on birefringence. It is further confirmed by the examination of different Raman modes using different laser lines and BP samples of different thicknesses.  相似文献   

18.
Infrared imaging systems have wide range of military or civil applications and 2D nanomaterials have recently emerged as potential sensing materials that may outperform conventional ones such as HgCdTe, InGaAs, and InSb. As an example, 2D black phosphorus (BP) thin film has a thickness‐dependent direct bandgap with low shot noise and noncryogenic operation for visible to mid‐infrared photodetection. In this paper, the use of a single‐pixel photodetector made with few‐layer BP thin film for near‐infrared imaging applications is demonstrated. The imaging is achieved by combining the photodetector with a digital micromirror device to encode and subsequently reconstruct the image based on compressive sensing algorithm. Stationary images of a near‐infrared laser spot (λ = 830 nm) with up to 64 × 64 pixels are captured using this single‐pixel BP camera with 2000 times of measurements, which is only half of the total number of pixels. The imaging platform demonstrated in this work circumvents the grand challenges of scalable BP material growth for photodetector array fabrication and shows the efficacy of utilizing the outstanding performance of BP photodetector for future high‐speed infrared camera applications.  相似文献   

19.
20.
Phosphorene, a single‐ or few‐layered semiconductor material obtained from black phosphorus, has recently been introduced as a new member of the family of two‐dimensional (2D) layered materials. Since its discovery, phosphorene has attracted significant attention, and due to its unique properties, is a promising material for many applications including transistors, batteries and photovoltaics (PV). However, based on the current progress in phosphorene production, it is clear that a lot remains to be explored before this material can be used for these applications. After providing a comprehensive overview of recent advancements in phosphorene synthesis, advantages and challenges of the currently available methods for phosphorene production are discussed. An overview of the research progress in the use of phosphorene for a wide range of applications is presented, with a focus on enabling important roles that phosphorene would play in next‐generation PV cells. Roadmaps that have the potential to address some of the challenges in phosphorene research are examined because it is clear that the unprecedented chemical, physical and electronic properties of phosphorene and phosphorene‐based materials are suitable for various applications, including photovoltaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号