首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O3‐type NaNi1/3Fe1/3Mn1/3O2 (NaNFM) is well investigated as a promising cathode material for sodium‐ion batteries (SIBs), but the cycling stability of NaNFM still needs to be improved by using novel electrolytes or optimizing their structure with the substitution of different elements sites. To enlarge the alkali‐layer distance inside the layer structure of NaNFM may benefit Na+ diffusion. Herein, the effect of Ca‐substitution is reported in Na sites on the structural and electrochemical properties of Na1?xCax/2NFM (x = 0, 0.05, 0.1). X‐ray diffraction (XRD) patterns of the prepared Na1?xCax/2NFM samples show single α‐NaFeO2 type phase with slightly increased alkali‐layer distance as Ca content increases. The cycling stabilities of Ca‐substituted samples are remarkably improved. The Na0.9Ca0.05Ni1/3Fe1/3Mn1/3O2 (Na0.9Ca0.05NFM) cathode delivers a capacity of 116.3 mAh g?1 with capacity retention of 92% after 200 cycles at 1C rate. In operando XRD indicates a reversible structural evolution through an O3‐P3‐P3‐O3 sequence of Na0.9Ca0.05NFM cathode during cycling. Compared to NaNMF, the Na0.9Ca0.05NFM cathode shows a wider voltage range in pure P3 phase state during the charge/discharge process and exhibits better structure recoverability after cycling. The superior cycling stability of Na0.9Ca0.05NFM makes it a promising material for practical applications in sodium‐ion batteries.  相似文献   

2.
High‐voltage layered lithium transition‐metal oxides are very promising cathodes for high‐energy Li‐ion batteries. However, these materials often suffer from a fast degradation of cycling stability due to structural evolutions. It seriously impedes the large‐scale application of layered lithium transition‐metal oxides. In this work, an ultralong life LiMn1/3Co1/3Ni1/3O2 microspherical cathode is prepared by constructing an Mn‐rich surface. Its capacity retention ratio at 700 mA g?1 is as large as 92.9% after 600 cycles. The energy dispersive X‐ray maps of electrodes after numerous cycles demonstrate that the ultralong life of the as‐prepared cathode is attributed to the mitigation of TM‐ions segregation. Additionally, it is discovered that layered lithium transition‐metal oxide cathodes with an Mn‐rich surface can mitigate the segregation of TM ions and the corrosion of active materials. This study provides a new strategy to counter the segregation of TM ions in layered lithium transition‐metal oxides and will help to the design and development of high‐energy cathodes with ultralong life.  相似文献   

3.
4.
5.
The hydrogen and carbon monoxide separation is an important step in the hydrogen production process. If H2 can be selectively removed from the product side during hydrogen production in membrane reactors, then it would be possible to achieve complete CO conversion in a single‐step under high temperature conditions. In the present work, the multilayer amorphous‐Si‐B‐C‐N/γ‐Al2O3/α‐Al2O3 membranes with gradient porosity have been realized and assessed with respect to the thermal stability, geometry of pore space and H2/CO permeance. The α‐Al2O3 support has a bimodal pore‐size distribution of about 0.64 and 0.045 µm being macroporous and the intermediate γ‐Al2O3 layer—deposited from boehmite colloidal dispersion—has an average pore‐size of 8 nm being mesoporous. The results obtained by the N2‐adsorption method indicate a decrease in the volume of micropores—0.35 vs. 0.75 cm3 g?1—and a smaller pore size ?6.8 vs. 7.4 Å—in membranes with the intermediate mesoporous γ‐Al2O3 layer if compared to those without. The three times Si‐B‐C‐N coated multilayer membranes show higher H2/CO permselectivities of about 10.5 and the H2 permeance of about 1.05 × 10?8 mol m?2 s?1 Pa?1. If compared to the state of the art of microporous membranes, the multilayer Si‐B‐C‐N/γ‐Al2O3/α‐Al2O3 membranes are appeared to be interesting candidates for hydrogen separation because of their tunable nature and high‐temperature and high‐pressure stability.  相似文献   

6.
Li‐rich oxide cathodes are of prime importance for the development of high‐energy lithium‐ion batteries (LIBs). Li‐rich layered oxides, however, always undergo irreversible structural evolution, leading to inevitable capacity and voltage decay during cycling. Meanwhile, Li‐rich cation‐disordered rock‐salt oxides usually exhibit sluggish kinetics and inferior cycling stability, despite their firm structure and stable voltage output. Herein, a new Li‐rich rock‐salt oxide Li2Ni1/3Ru2/3O3 with Fd‐3m space group, where partial cation‐ordering arrangement exists in cationic sites, is reported. Results demonstrate that a cathode fabricated from Li2Ni1/3Ru2/3O3 delivers a large capacity, outstanding rate capability as well as good cycling performance with negligible voltage decay, in contrast to the common cations disordered oxides with space group Fm‐3m. First principle calculations also indicate that rock‐salt oxide with space group Fd‐3m possesses oxygen activity potential at the state of delithiation, and good kinetics with more 0‐TM (TM = transition metals) percolation networks. In situ Raman results confirm the reversible anionic redox chemistry, confirming O2?/O? evolution during cycles in Li‐rich rock‐salt cathode for the first time. These findings open up the opportunity to design high‐performance oxide cathodes and promote the development of high‐energy LIBs.  相似文献   

7.
8.
The electrical properties of α,ω‐mercaptoalkyl ferrocenes with different alkyl chain lengths embedded in a self‐assembled host matrix of alkanethiols on Au(111) are studied by scanning tunneling microscopy and spectroscopy. Based on current–distance spectroscopy, as well as on the evaluation of Fowler–Nordheim tunneling current oscillations, the apparent barrier height of ferrocene is determined independently by two methods. The electronic coupling of the ferrocene moiety to the Au(111) substrate is shown to depend on the length of the alkane‐spacer chain. In a double tunnel junction model our experimental findings are explained, addressing the role of the different molecular moieties of the mercaptoalkyl ferrocenes.  相似文献   

9.
The challenge in the artificial photosynthesis of fossil resources from CO2 by utilizing solar energy is to achieve stable photocatalysts with effective CO2 adsorption capacity and high charge‐separation efficiency. A hierarchical direct Z‐scheme system consisting of urchin‐like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO2 to CO, yielding a CO evolution rate of 27.2 µmol g?1 h?1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g‐C3N4 alone (10.3 µmol g?1 h?1). The enhanced photocatalytic activity of the Z‐scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin‐like hematite and preferable basic sites which promotes the CO2 adsorption, and (ii) the unique Z‐scheme feature efficiently promotes the separation of the electron–hole pairs and enhances the reducibility of electrons in the conduction band of the g‐C3N4. The origin of such an obvious advantage of the hierarchical Z‐scheme is not only explained based on the experimental data but also investigated by modeling CO2 adsorption and CO adsorption on the three different atomic‐scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal‐oxide‐based Z‐scheme system for solar fuel generation.  相似文献   

10.
In the specific context of condensed media, the significant and increasing recent interest in the α‐cyanostilbene (CS) motif [? Ar? CH?C(CN)? Ar? ] is relevant. These compounds have shown remarkable optical features in addition to interesting electrical properties, and hence they are recognized as very suitable and versatile options for the development of functional materials. This progress report is focused on current and future use of CS structures and molecular assemblies with the aim of exploring and developing for the next generations of functional materials. A critical selection of illustrative materials that contain the CS motif, including relevant subfamilies such as the dicyanodistyrylbenzene and 2,3,3‐triphenylacrylonitrile shows how, driven by the self‐assembly of CS blocks, a variety of properties, effects, and possibilities for practical applications can be offered to the scientific community, through different rational routes for the elaboration of advanced materials. A survey is provided on the research efforts directed toward promoting the self‐assembly of the solid state (polycrystalline solids, thin films, and single crystals), liquid crystals, nanostructures, and gels with multistimuli responsiveness, and applications for sensors, organic light‐emitting diodes, organic field effect transistors, organic lasers, solar cells, or bioimaging purposes.  相似文献   

11.
12.
Incorporation of N,S‐codoped nanotube‐like carbon (N,S‐NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α‐MnS nanoparticles (NPs) are in situ encapsulated into N,S‐NTC, preparing an advanced anode material (α‐MnS@N,S‐NTC) for lithium‐ion/sodium‐ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → β phase transition of MnS NPs during the 1st cycle effectively promotes Li‐storage properties, which is deduced by the studies of ex situ X‐ray diffraction/high‐resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α‐MnS@N,S‐NTC electrode delivers a high Li‐storage capacity (1415 mA h g?1 at 50 mA g?1), excellent rate capability (430 mA h g?1 at 10 A g?1), and long‐term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g?1) with retained morphology. In addition, the N,S‐NTC‐based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α‐MnS@N,S‐NTC also delivers high Na‐storage capacity (536 mA h g?1 at 50 mA g?1) without the occurrence of such α → β phase transition and excellent full‐cell performances as coupling with commercial LiFePO4 and LiNi0.6Co0.2Mn0.2O2 cathodes in LIBs as well as Na3V2(PO4)2O2F cathode in SIBs.  相似文献   

13.
Polyhydroxylated fullerenols especially gadolinium endohedral metallofullerenols (Gd@C82(OH)22) are shown as a promising agent for antitumor chemotherapeutics and good immunoregulatory effects with low toxicity. However, their underlying mechanism remains largely unclear. We found for the first time the persistent uptake and subcellular distribution of metallofullerenols in macrophages by taking advantages of synchrotron‐based scanning transmission X‐ray microscopy (STXM) with high spatial resolution of 30 nm. Gd@C82(OH)22 can significantly activate primary mouse macrophages to produce pro‐inflammatory cytokines like IL‐1β. Small interfering RNA (siRNA) knockdown shows that NLRP3 in?ammasomes, but not NLRC4, participate in fullerenol‐induced IL‐1β production. Potassium efflux, activation of P2X7 receptor and intracellular reactive oxygen speciesare also important factors required for fullerenols‐induced IL‐1β release. Stronger NF‐κB signal triggered by Gd@C82(OH)22 is in agreement with higher pro‐IL‐1β expression than C60(OH)22. Interestingly, TLR4/MyD88 pathway but not TLR2 mediates IL‐1β secretion in Gd@C82(OH)22 exposure confirmed by macrophages from MyD88?/?/TLR4?/?/TLR2?/? knockout mice, which is different from C60(OH)22. Our work demonstrated that fullerenols can greatly activate macrophage and promote IL‐1β production via both TLRs/MyD88/NF‐κB pathway and NLRP3 inflammasome activation, while Gd@C82(OH)22 had stronger ability C60(OH)22 due to the different electron affinity on the surface of carbon cage induced by the encaged gadolinium ion.  相似文献   

14.
15.
16.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated (Cas) enzyme, Cas13a, holds great promise in cancer treatment due to its potential for selective destruction of tumor cells via collateral effects after target recognition. However, these collateral effects do not specifically target tumor cells and may cause safety issues when administered systemically. Herein, a dual‐locking nanoparticle (DLNP) that can restrict CRISPR/Cas13a activation to tumor tissues is described. DLNP has a core–shell structure, in which the CRISPR/Cas13a system (plasmid DNA, pDNA) is encapsulated inside the core with a dual‐responsive polymer layer. This polymer layer endows the DLNP with enhanced stability during blood circulation or in normal tissues and facilitates cellular internalization of the CRISPR/Cas13a system and activation of gene editing upon entry into tumor tissue. After carefully screening and optimizing the CRISPR RNA (crRNA) sequence that targets programmed death‐ligand 1 (PD‐L1), DLNP demonstrates the effective activation of T‐cell‐mediated antitumor immunity and the reshaping of immunosuppressive tumor microenvironment (TME) in B16F10‐bearing mice, resulting in significantly enhanced antitumor effect and improved survival rate. Further development by replacing the specific crRNA of target genes can potentially make DLNP a universal platform for the rapid development of safe and efficient cancer immunotherapies.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号