首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flexible microfluidic systems have potential in wearable and implantable medical applications. Directional liquid transportation in these systems typically requires mechanical pumps, gas tanks, and magnetic actuators. Herein, an alternative strategy is presented for light‐directed liquid manipulation in flexible bilayer microtubes, which are composed of a commercially available supporting layer and the photodeformable layer of a newly designed azobenzene‐containing linear liquid crystal copolymer. Upon moderate visible light irradiation, various liquid slugs confined in the flexible microtubes are driven in the preset direction over a long distance due to photodeformation‐induced asymmetric capillary forces. Several light‐driven prototypes of parallel array, closed‐loop channel, and multiple micropump are established by the flexible bilayer microtubes to achieve liquid manipulation. Furthermore, an example of a wearable device attached to a finger for light‐directed liquid motion is demonstrated in different gestures. These unique photocontrollable flexible microtubes offer a novel concept of wearable microfluidics.  相似文献   

2.
3.
Using a dynamic fabrication process, hybrid, photoactivated microswimmers made from two different semiconductors, titanium dioxide (TiO2) and cuprous oxide (Cu2O) are developed, where each material occupies a distinct portion of the multiconstituent particles. Structured light‐activated microswimmers made from only TiO2 or Cu2O are observed to be driven in hydrogen peroxide and water most vigorously under UV or blue light, respectively, whereas hybrid structures made from both of these materials exhibit wavelength‐dependent modes of motion due to the disparate responses of each photocatalyst. It is also found that the hybrid particles are activated in water alone, a behavior which is not observed in those made from a single semiconductor, and thus, the system may open up a new class of fuel‐free photoactive colloids that take advantage of semiconductor heterojunctions. The TiO2/Cu2O hybrid microswimmer presented here is but an example of a broader method for inducing different modes of motion in a single light‐activated particle, which is not limited to the specific geometries and materials presented in this study.  相似文献   

4.
The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low‐cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light‐emitting diode (OLED) and related EL devices. TADF emitters are cross‐compared within specific color ranges, with a focus on blue, green–yellow, orange–red, and white OLEDs. Organic small‐molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs.  相似文献   

5.
6.
Although organic light‐emitting diodes (OLEDs) are promising for use in applications such as in flexible displays, reports of long‐lived flexible OLED‐based devices are limited due to the poor environmental stability of OLEDs. Flexible substrates such as plastic allow ambient oxygen and moisture to permeate into devices, which degrades the alkali metals used for the electron‐injection layer in conventional OLEDs (cOLEDs). Here, the fabrication of a long‐lived flexible display is reported using efficient and stable inverted OLEDs (iOLEDs), in which electrons can be effectively injected without the use of alkali metals. The flexible display employing iOLEDs can emit light for over 1 year with simplified encapsulation, whereas a flexible display employing cOLEDs exhibits almost no luminescence after only 21 d with the same encapsulation. These results demonstrate the great potential of iOLEDs to replace cOLEDs employing alkali metals for use in a wide variety of flexible organic optoelectronic devices.  相似文献   

7.
Recent years have seen a considerable growth of research interests in developing novel technologies that permit designable manufacture and controllable manipulation of actuators. Among various fabrication and driving strategies, light has emerged as an enabler to reach this end, contributing to the development of actuators. Several accessible light‐mediated manufacturing technologies, such as ultraviolet (UV) lithography and direct laser writing (DLW), are summarized. A series of light‐driven strategies including optical trapping, photochemical actuation, and photothermal actuation for controllable manipulation of actuators is introduced. Current challenges and future perspectives of this field are discussed. To generalize, light holds great promise for the development of actuators.  相似文献   

8.
9.
Flexible inorganic‐based micro light‐emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light‐extraction efficiency on plastics. Here, high‐performance flexible vertical GaN light‐emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f‐VLEDs) with high optical power (30 mW mm?2), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light‐emitting system on the human skin is successfully realized by transferring the electrical power f‐VLED. Finally, the high‐density GaN f‐VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain.  相似文献   

10.
11.
12.
A method to print two materials of different functionality during the same printing step is presented. In printed electronics, devices are built layer by layer and conventionally only one type of material is deposited in one pass. Here, the challenges involving printing of two emissive materials to form polymer light‐emitting diodes (PLEDs) that emit light of different wavelengths without any significant changes in the device characteristics are described. The surface‐energy‐patterning technique is utilized to print materials in regions of interest. This technique proves beneficial in reducing the amount of ink used during blade coating and improving the reproducibility of printed films. A variety of colors (green, red, and near‐infrared) are demonstrated and characterized. This is the first known attempt to print multiple materials by blade coating. These devices are further used in conjunction with a commercially available photodiode to perform blood oxygenation measurements on the wrist, where common accessories are worn. Prior to actual application, the threshold conditions for each color are discussed, in order to acquire a stable and reproducible photoplethysmogram (PPG) signal. Finally, based on the conditions, PPG and oxygenation measurements are successfully performed on the wrist with green and red PLEDs.  相似文献   

13.
Buckling instabilities generate microscale features in thin films in a facile manner. Buckles can form, for example, by heating a metal/polymer film stack on a rigid substrate. Thermal expansion differences of the individual layers generate compressive stress that causes the metal to buckle over the entire surface. The ability to dictate and confine the location of buckle formation can enable patterns with more than one length scale, including hierarchical patterns. Here, sacrificial “ink” patterned on top of the film stack localizes the buckles via two mechanisms. First, stiff inks suppress buckles such that only the non‐inked regions buckle in response to infrared light. The metal in the non‐inked regions absorbs the infrared light and thus gets sufficiently hot to induce buckles. Second, soft inks that absorb light get hot faster than the non‐inked regions and promote buckling when exposed to visible light. The exposed metal in the non‐inked regions reflects the light and thus never get sufficiently hot to induce buckles. This second method works on glass substrates, but not silicon substrates, due to the superior thermal insulation of glass. The patterned ink can be removed, leaving behind hierarchical patterns consisting of regions of buckles among non‐buckled regions.  相似文献   

14.
15.
16.
Fabrication of junction‐free Ag fiber electrodes for flexible organic light‐emitting diodes (OLEDs) is demonstrated. The junction‐free Ag fiber electrodes are fabricated by electrospun polymer fibers used as an etch mask and wet etching of Ag thin film. This process facilitates surface roughness control, which is important in transparent electrodes based on metal wires to prevent electrical instability of the OLEDs. The transmittance and resistance of Ag fiber electrodes can be independently adjusted by controlling spinning time and Ag deposition thickness. The Ag fiber electrode shows a transmittance of 91.8% (at 550 nm) at a sheet resistance of 22.3 Ω □?1, leading to the highest OLED efficiency. In addition, Ag fiber electrodes exhibit excellent mechanical durability, as shown by measuring the change in resistance under repeatable mechanical bending and various bending radii. The OLEDs with Ag fiber electrodes on a flexible substrate are successfully fabricated, and the OLEDs show an enhancement of EQE (≈19%) compared to commercial indium tin oxide electrodes.  相似文献   

17.
18.
19.
20.
The collective phenomena exhibited by artificial active matter systems present novel routes to fabricating out‐of‐equilibrium microscale assemblies. Here, the crystallization of passive silica colloids into well‐controlled 2D assemblies is shown, which is directed by a small number of self‐propelled active colloids. The active colloids are titania–silica Janus particles that are propelled when illuminated by UV light. The strength of the attractive interaction and thus the extent of the assembled clusters can be regulated by the light intensity. A remarkably small number of the active colloids is sufficient to induce the assembly of the dynamic crystals. The approach produces rationally designed colloidal clusters and crystals with controllable sizes, shapes, and symmetries. This multicomponent active matter system offers the possibility of obtaining structures and assemblies that cannot be found in equilibrium systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号