首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A pin-on-disk tribometer was used, in a comparative test to observe the tribological behavior of the swine femoral bone against UHMWPE with dry friction, physiological water and human plasma lubrication. The wear mechanisms of swine bones and UHMWPE were investigated by SEM. The experimental results of these wear tests demonstrated that both the friction coefficient and wear rate of UHMWPE were the lowest when human plasma lubrication was used. The wear mechanism of the compact bone was mainly fatigue wear with dry friction, corrosive wear under physiological water lubrication and abrasive wear with human plasma lubrication. For UHMWPE, the wear mechanism was adhesive wear and plastic deformation with dry friction, serious ploughing and fatigue fracture wear under physiological water lubrication, fine ploughing and plastic deformation with human plasma lubrication. An analysis of nitrogen elements on the wear surface of UHMWPE indicated that the content of nitrogen in worn areas was 16 times higher than that in unworn areas, which proved that serum protein deposition occurred on worn areas.  相似文献   

2.
1 IntroductionTribologicalphenomenoncanbeseenintheopera tionsofequipments ,instruments ,units ,andsoon .Theinvestigationonthemagnetictribologyattractsbroadinter estsoftribologicalworkers ,andthesignificantexplorationsonthetheoreticalandapplicationhavecarriedout .Thefrictionreductionandwearpreventioninthepresenceofmagneticfieldareconsideredtobetheincreaseofmicro hardnessontherubbingsurfaceandtheoxidationofoxy genonthewearsurfaceatthedryfrictionofatmosp here[1 4] .Theperformanceofboundarylubric…  相似文献   

3.
In-situ TiB2 particles reinforced ZA27 composite was prepared by the stir-casting technique and a twostep method. TiB2/Al composite was produced by incorporating K2 TiF6, KBF4 salts and other agents into Al melt. As a master alloy, TiB2/Al composite was used to manufacture TiB2/ZA27 composite, which results in the generation of well-distributed reinforcing TiB2 phase. The hardness, friction and wear behavior of TiB2/ZA27 composite were investigated. The results show that the hardness of the composite is enhanced with increasing the content of TiB2 particles, the incorporation of TiB2 reduces the wear rate of TiB2/ZA27 composite and improves the friction property under lubricated and dry sliding friction conditions. The worn track width of ZA27 alloy is 1.6 and 2.5 times as long as that of 2.1%TiB2/ZA27 composite at 150 N and 700 N load under lubricated conditions, which indicates that TiB2/ZA27 composite possesses higher bearing ability.  相似文献   

4.
The wear process of PTFE coatings sliding against GCrlS-bearing steel ball under vacuum conditions was investigated, and the hardness of the PTFE coatings on both sides of wear track was measured. The experimental results showed that the friction coefficient of the PTFE coatings increases with the increase of sliding distance under different sliding velocities. And the friction coefficient of the PTFE coatings increases with the increase of sliding distance under different sliding loads. The wear rate of PTFE coatings decreases with the increase of sliding distance. And the majority of the wear produced during the whole wear process of PTFE coatings sliding against GCr-15 steel ball comes from the early period of friction. The hardness of PTFE coatings on both sides of wear track increases as the distance increases and distributes symmetrically around the wear track. Scanning electron microscope (SEM) was utilized to investigate the worn surface of PTFE coating, h was found that the worn surface of PTFE coating is characterized by sever plastic deformation and spalling of the PTFE coating. The edge of wear track is characterized by micro cracking.  相似文献   

5.
Wear particles of ultrahigh molecular weight polyethylene (UHMWPE) are the main cause of long-term failure of total joint replacements. Therefore, increasing its wear resistance or bioactivity will be very useful in order to obtain high quality artificial joints. In our study, UHMWPE composites filled with the bovine bone hydroxyapatite (BHA) were prepared by the method of compression moulding. A ball-on-disc wear test was carried out with a Universal Micro-Tribometer to investigate the friction and wear behavior of a Si3N4 ceramic ball, cross-sliding against the UHMWPE/BHA composites with human plasma lubrication. At the same time, the profiles of the worn grooves on the UHMWPE/BHA surface were scanned. The experimental results indicate that the addition of BHA to UHMWPE had a significant effect on the biotribological behavior of UHMWPE cross-sliding against the Si3N4 ceramic ball. The addition of BHA powder enhanced the hardness and modulus of elasticity of these composites and decreased the friction coefficients and wear rates under conditions of human plasma lubrication. When the added amount of BHA powders was up to 20%~30%, UHMWPE/BHA composites demonstrated the designed performance of the mechanical properties and biotribological behavior.  相似文献   

6.
Dry Friction Characteristics of Ti-6Al-4V Alloy under High Sliding Velocity   总被引:2,自引:0,他引:2  
Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribometer under unlubricated conditions. The wear mechanisms and the wear transition were analyzed based on examinations of worn surfaces using SEM, EDS and XRD. When the velocity increases, the friction coefficient and the wear rate of the Ti-6Al-4V alloy show typical transition features, namely, the critical values of sliding velocities for 0.33 and 0.67 MPa are 60 and 40 m/s, respectively. The experimental results reveal that the tribological behaviours of Ti-6Al-4V alloys are controlled by the thermal-mechanical effects, which connects with the friction heat and hard particles of the pairs. A tribolayer containing mainly Ti oxides and V oxides is formed on the worn surface of Ti-6Al-4V alloy.  相似文献   

7.
1 IntroductionThe friction and wear behavior of metals underuni-directional sliding has been widely studied eitherby ball-on-disc or by block-on-ring test machines[1].In practical applications, however, we will usuallymeet cross-sliding condition. For example, compositefretting wear of a ball on disc includes the tangentialfretting and the radial fretting [2] .Zhu et al[3-4] stud-ied the composite fretting wear behaviors of GCr15bearing steel and 7075 aluminum alloys. In slidingbearing, the …  相似文献   

8.
研究了在蒸馏水润滑下Si3N4、Al2O3陶瓷与灰铸铁副的摩擦磨损特性。结果表明:Al2O3陶瓷的磨损体积损失远小于Si3N4的,但灰铸铁与Si3N4配副时的磨损体积损失却大大小于与Al2O3配副时的,其摩擦系数也很小(0.02)。用SEM观察磨损形貌,发现灰铸铁与Si3N4配副时Si3N4磨面极其光滑,与其对应的灰铸铁磨面上存在含石墨的润滑膜。  相似文献   

9.
Friction and wear of GCr15 under cross-sliding condition is tested on a ball-on-disc wear test machine. This result shows that the cross-sliding of friction pair leads to different friction and wear behavior. For the condition described in this paper, the friction coefficients with ball reciprocating are smaller than that without ball reciprocating. The friction coefficients increase with the increase of reciprocating frequency.. The wear weight loss of the ball subjected reciprocating sliding decreases, however, the wear weight loss of disc against the reciprocating ball increases. In cross-sliding friction, the worn surfaces of the ball show crinkle appearance along the circumferential sliding traces. Delaminating of small strip debris is formed along the plowing traces on the disc worn surface. The plowing furrow on the disc surfaces looks deeper and wider than that without reciprocating sliding. The size of wear particles from cross-sliding wear is larger than those without reciprocating sliding.  相似文献   

10.
As a potential artificial cartilage material,the friction and wear properties of nano-hydroxy apatite(HA)particles filled poly(vinyl alcohol)hydrogel(PVA-H)composites sliding against stainless steel disk under water lubrication condition were studied by using a four ball tester.The worn surfaces were investigated by using a scanning electron microscope(SEM)to determine the wear mechanisms.Experimental results show that filling HA to PVA-H will slightly increase the friction coefficient of composites with the increasing of HA content under water lubrication condition.Meanwhile,HA particles can greatly reduce the wear mass loss of the PVA-H composites and enhance the load carrying capacity,the wear loss of the 1 wt% HA reinforced PVA-H composites can be decreased by 30 percent under 2.0 MPa to 50 percent under 0.5 MPa contact pressure.We also found that 2 wt% HA content of composites increase the wear mass loss under the same condition.SEM examination shows that the worn surface of low HA containing(1 wt%)composites are much smoother than that of pure PVA-H or high HA containing(2 wt%)composites under 1.5 MPa contact pressure.It is also found that there are big hole and big reunited HA particles in the surface of 2 wt% HA containing composites,which leads to deterioration of the surface of samples under higher loads in water lubrication.These results may be useful in the tribological design of artificial articular cartilage material.  相似文献   

11.
As a potential artificial cartilage material, the friction and wear properties of nano-hydroxy apatite (HA) particles filled poly (vinyl alcohol) hydrogel (PVA-H) composites sliding against stainless steel disk under water lubrication condition were studied by using a four ball tester. The worn surfaces were investigated by using a scanning electron microscope (SEM) to determine the wear mechanisms. Experimental results show that filling HA to PVA-H will slightly increase the friction coefficient of composites with the increasing of HA content under water lubrication condition. Meanwhile, HA particles can greatly reduce the wear mass loss of the PVA-H composites and enhance the load carrying capacity, the wear loss of the 1 wt% HA reinforced PVA-H composites can be decreased by 30 percent under 2.0 MPa to 50 percent under 0.5 MPa contact pressure. We also found that 2 wt% HA content of composites increase the wear mass loss under the same condition. SEM examination shows that the worn surface of low HA containing (1 wt%) composites are much smoother than that of pure PVA-H or high HA containing (2 wt%) composites under 1.5 MPa contact pressure. It is also found that there are big hole and big reunited HA particles in the surface of 2 wt% HA containing composites, which leads to deterioration of the surface of samples under higher loads in water lubrication. These results may be useful in the tribological design of artificial articular cartilage material.  相似文献   

12.
To improve tribological property of MC Nylon6,the glass fiber and fly ash reinforced monomer casting nylon composites(GFFAPA)were prepared by anionic polymerization of ε-caprolactam.The friction and wear behaviors of composites under dry condition,water lubrication and oil lubrication were investigated through a ring-black wear tester.Worn surfaces were analyzed using a scanning electron microscope.The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing.Compared to MC nylon,the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites(GFPA)with GF30% respectively decrease by 33.1% and 65.3%,of fly ash reinforced nylon composites(FAPA)with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%.The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear.The worn surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites.Compared with dry friction,the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions.The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition.  相似文献   

13.
超高分子量聚乙烯与钢的冲蚀磨损研究   总被引:2,自引:0,他引:2  
用气流喷砂型冲蚀试验装置对超高分子量聚乙烯(Ultra High Moleular Weight Polyethylene,UHMWPE)和45#钢的冲蚀磨损性能进行进行了比较,考察了冲蚀粒子(煤粉,二氧化硅)的入射角,冲蚀时间等对超高分子量聚乙烯和45#钢冲蚀磨损的影响,通过扫描电子显微镜对超高分子量聚乙烯和45#钢冲蚀磨损表面形貌的观察,并对超高分子量聚乙烯和45#钢冲蚀磨损机理进行了初步探讨。  相似文献   

14.
牙修复材料的摩擦学特性研究   总被引:1,自引:0,他引:1  
在WTM-1E微型摩擦磨损试验仪上对3种牙修复材料做摩擦磨损实验,并利用扫描电子显微镜对摩擦后材料的表面形貌观察,发现钛、钛合金的摩擦系数大小及变化趋势基本一致,两者的摩擦学特性相似;银汞合金的摩擦系数明显低于其他金属材料;与Si3N4陶瓷球对磨时钛的磨损机制为粘着磨损,钛合金为粘着磨损与磨粒磨损并存,而银汞合金为磨粒磨损。结论:银汞合金不适宜作为牙修复材料使用,而钛和钛合金都具有良好的耐磨性,是较为理想的牙修复材料。  相似文献   

15.
MoSi2 samples were prepared by a self-propagating high-temperature synthesis (SHS) and a hot-press technique. The sliding friction and wear properties of intermetallic MoSi2 against AISI10045 steel under dry friction and oil lubrication conditions were investigated with a MRH-5A type ring-on-block friction and wear tester. The elemental composition, microstructure and worn surface morphology of the MoSi2 material were observed and analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The synthetic parameter pv value reflecting friction work, was used to discuss the tribological properties of MoSi2 material. The results show that 1) oil lubrication can obviously improve the tribological properties of MoSi2, 2) the bigger the pv value, the greater the antifriction and the abrasive resistance of MoSi2 under oil lubrication, 3) with an increase in the pv value, the wear mechanism of MoSi2 material under dry sliding friction is the fatigue fracture and adhesive wear and 4) under oil lubrication the wear mechanism is mainly fatigue pitting.  相似文献   

16.
Tribological Properties of PVA-H Composites Reinforced by Nano-HA Particles   总被引:1,自引:0,他引:1  
The friction and wear behaviors of tribological mechanical components were studied on a four-ball tester under dry conditions, and the wear mechanism was analyzed by observed worn surface using a scanning electron microscope (SEM). It was found that the friction and wear properties were improved by the addition ofnano HA particles. The composite containing 1 wt% nano HA had the optimum friction coefficient. It is also found that the addition of nano HA increases the wear resistance of oure PVA-H and PVA-H composites.  相似文献   

17.
在2738模具钢表面通过CO2激光熔覆制备Ni基WC复合涂层。分别对2738钢基体和Ni-WC激光熔覆层进行干摩擦试验。用三维表面形貌仪测量磨损体积,用扫描电镜观察磨痕的表面形貌。试验结果表明,Ni-WC复合涂层试样的硬度显著提高,表面硬度超过1200HV,保证了Ni-WC熔覆层的耐磨性。熔覆层的平均摩擦因数约为0.24,与2738钢基体的摩擦因数0.43相比,降低了约44%。熔覆试样的比磨损率比基体试样的比磨损率下降了96.7%,WC硬质相提高了摩擦副表面的承载能力。磨粒磨损为Ni-WC复合涂层的主要磨损机理。  相似文献   

18.
作者用扫描电子显微镜,电子探针等分析了3Cr2W8V钢高温磨损表面,考察了磨损表面形态随试验温度及试验时间的变化规律,给出了相应的磨损表面特征照片,并结合磨损机理分析了该钢的温度——磨损特性曲线。文中还着重分析了高温磨损时在表面形成的“形成层”的成分、作用及形态,并探讨了磨损表面上沟槽产生的原因。  相似文献   

19.
聚四氟乙烯填充PA1010的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
以注塑成型法制备了聚四氟乙烯(PTFE)填充PA1010复合材料,利用M-2000磨损试验机测试了该复合材料与GCr15轴承钢对摩时的摩擦磨损性能,并用扫描电子显微镜(SEM)观察了试样磨损表面形貌.结果表明:PTFE填充PA1010可显著改善尼龙复合材料的摩擦磨损性能.w(PTFE)为25%时,复合材料的摩擦学综合性能最佳.复合材料的摩擦系数和磨损体积随施加载荷、滑动速度的增加分别呈现降低和增加的趋势.在200 N载荷下,复合材料磨损主要为磨粒磨损;在400 N载荷下,磨损表现为黏着磨损和磨粒磨损共同作用.在滑动速度为0.21 m/s时,材料摩擦表面因挤压发生塑性流变,其磨损机理为磨粒磨损;在滑动速度为0.84 m/s,复合材料因热疲劳和应力疲劳发生剥层,磨损机理转变为疲劳剥层磨损.  相似文献   

20.
Polytetrafluoroethylene(PTFE) is a commonly used seal material for oil-free engine that is well known for its excellent tribological properties. In this work, the nano-ZrO_2 particles were used as the friction modifiers to improve the friction and wear performance of PTFE-PPS composites. The friction and wear characteristics of PTFE/PPS-nano-ZrO_2 composites were investigated by a block-on-ring tester under dry friction sliding condition. The worn surfaces, counterpart transfer films and wear debris were studied by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the increase of nanoZrO_2 content could effectively reduce the coefficient of friction and enhance the anti-wear ability of PTFEPPS composites. Especially, the best tribological properties of the composites were obtained when the particle content of nano-ZrO_2 was 10 vol%, the anti-wear performance of composite is 195 times better than that of the unfilled PTFE-PPS composite. Under different conditions, the coefficient of friction of PTFE/PPS-nano-ZrO_2 composites was more affected by the applied load while the wear rate was more affected by the sliding velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号