首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary cultures of smooth muscle cells were established from the medial layer of guinea pig aorta. Cells at passage level 4 were treated with different series of fatty acids belonging to the n-9, n-6 and n-3 families. Lipid peroxidation was measured by the thiobarbituric acid assay and prostaglandin biosynthesis was measured by the radioimmunoassay of PGE and 6-keto-PGF. Cell proliferation was estimated from the total cell number of cultures seeded at low density. 18∶1(n-9) did not form lipid peroxides and this fatty acid stimulated cell proliferation. All fatty acids which generated lipid peroxides inhibited cell proliferation, but inhibition was correlated with the degree of lipid peroxidation only in the n-9 fatty acid family. 22∶4(n-6) and 22∶6(n-3) inhibited prostaglandin biosynthesis. 18∶2(n-6), 18∶2(n-9), 18∶3(n-3), 20∶2(n-9), 20∶3(n-3) and 20∶5(n-3) had no effect on prostaglandin biosynthesis. 18∶3(n-6), 20∶3(n-6) and 20∶4(n-6) generated prostaglandins. 20∶3(n-9) generated metabolites with prostaglandin immunoreactivity. The inhibition of cell proliferation did not correlate with enhanced or inhibited prostaglandin synthesis. The inhibition of cell proliferation was related to the structures of the different polyunsaturated fatty acid families decreasing in the order n-9>n-6>n-3. Eicosatrienoic acids were the most effective inhibitors of cell proliferation in each fatty acid family and 20∶3(n-9) was the most potent eicosatrienoic acid. These data show that specific as yet unrecognized products of fatty acid metabolism are responsible for the inhibition of cell proliferation. Fatty acids are designated by the number of carbon atoms: number of double bonds and the position of the first double bond from the methyl terminus of the acyl chain is noted in parenthesis: 18∶1(n-9), 9-octadecenoic acid; 18∶2(n-9), 6,9-octadecadienoic acid; 18∶2(n-6), 9,12-octadecadienoic acid; 18∶3(n-6), 6,9,12-octadecatrienoic acid, 18∶3(n-3), 9,12,15-octadecatrienoic acid; 20∶2(n-9), 8,11-eicosadienoic acid; 20∶3(n-9), 5,8,11-eicosatrienoic acid; 20∶3(n-6), 8,11,-14-eicosatrienoic acid, 20∶4(n-6), 5,8,11,14-eicosatetraenoic acid; 20∶5(n-3), 5,8,11,14,17-eicosapentaenoic acid; 22∶4-(n-6), 7,10,13,16-docosatetraenoic acid, 22∶6(n-3), 4,7,10,13,16,19-docosahexaenoic acid. Presented at the 73rd AOCS annual meeting, Toronto, Canada, May 1982.  相似文献   

2.
The neutral and polar lipid composition ofEntomophthora coronata was determined qualitatively. The fungus was grown on a chemically nondefined medium (Sabouraud dextrose yeast extract) and a chemically defined medium for a period up to 26 days. The lipids were characterized by thin-layer, column, gas chromatography, and selective sprays,32P-labeling, and mass spectrometry. The neutral lipids consist of monoglycerides, diglycerides, cholesterol, free fatty acids, triglycerides, and cholesteryl esters. The polar lipids consist of phospholipids (phosphatidyl ethanolamine, phosphatidyl choline, lysophosphatidyl ethanolamine, lysophosphatidyl choline, and spingomyelin), a number of glycolipids including cerebrosides, and many unrecognizable lipids, most of which are present in trace amounts. The cerebrosides and spingomyelin are present in significant amounts, and their concentration increased with age of the culture. The major fatty acids (>10%) of the total, neutral, and polar lipids of the mycelia are 14∶0, 16∶0, 18∶1, 18∶3(γ), and 24∶1. The polar lipids of total culture (unsaturation index 0.88) and of the conidia (unsaturation index 1.48) are considerably more unsaturated than the corresponding neutral lipids (unsaturated index 0.50 and 0.49). The mycelial polar lipids, compared to the neutral lipids, possess less 14∶0 and 18∶1 but contain a greater percentage of 16∶0, 18∶2, 18∶3(γ), 24∶0, and 24∶1. The major fatty acid of the conidia (>10%) are 13∶0, 14∶0, 18∶1, 18∶2, 18∶3(γ), and 20∶4. Their polar lipids have a higher proportion of 18∶2, 18∶3(γ), and 20∶4. The cerebrosides possess 24.1 in high relative proportion (30.1%). Presented at the AOCS Meeting, Atlantic City, October 1971.  相似文献   

3.
Wolff RL  Christie WW  Pédrono F  Marpeau AM 《Lipids》1999,34(10):1083-1097
The fatty acid composition of the seeds from Agathis robusta, an Australian gymnosperm (Araucariaceae), was determined by a combination of chromatographic and spectrometric techniques. These enabled the identification of small amounts of arachidonic (5,8,11,14–20∶4) and eicosapentaenoic (5,8,11,14,17–20∶5) acid for the first time in the seed oil of a higher plant. They were apparently derived from γ-linolenic (6,9,12–18∶3) and stearidonic (6,9,12,15–18∶4) acids, which were also present, via chain elongation and desaturation, together with other expected biosynthetic intermediates [bis-homo-γ-linolenic (8,11,14–20∶3) and bishomo-stearidonic (8,11,14,17–20∶4) acids]. Also present were a number of C20 fatty acids, known to occur in most gymnosperm families, i.e., 5,11–20∶2, 11,14–20∶2 (bishomo-linoleic), 5,11,14–20∶3 (sciadonic), 11,14,17–20∶3 (bishomo-α-linolenic), and 5,11,14,17–20∶4 (juniperonic) acids. In contrast to most other gymnosperm seed lipids analyzed so far, A. robusta seed lipids did not contain C18 Δ5-desaturated acids [i.e., 5,9–18∶2 (taxoleic), 5,9,12–18∶3 (pinolenic), or 5,9,12,15–18∶4 (coniferonic)]. These structures support the simultaneous existence of Δ6- and Δ5-desaturase activities in A. robusta seeds. The Δ6-ethylenic bond is apparently introduced into C18 polyunsaturated acids, whereas the Δ5-ethylenic bond is introduced into C20 polyunsaturated acids. A general metabolic pathway for the biosynthesis of unsaturated fatty acids in gymnosperm seeds is proposed. When compared to Bryophytes, Pteridophytes (known to contain arachidonic and eicosapentaenoic acids), and species from other gymnosperm families (without such acids), A. robusta appears as an “intermediate,” with the C18 Δ6-desaturase/C18→C20 elongase/C20 Δ5-desaturase system in common with the former subphyla, and the unsaturated C18→C20 elongase/C20 Δ5-desaturase system specific to gymnosperms. The following hypothetical evolutionary sequence for the C18 Δ6/Δ5-desaturase class in gymnosperm seeds is suggested: Δ6 (initial)→Δ6/Δ5 (intermediate)→Δ5 (final).  相似文献   

4.
The fatty acids of liver lipids from rats raised on a fat free diet from the 30th to the 90th day after birth were analyzed with special regard to the detection of positional isomers of mono-, di-, tri-, and tetraenoic fatty acids. The methyl esters obtained after transesterification of total lipids were separated by argentation chromatography into five fractions: I saturated, II monoenoic, III dienoic, IV dienoic nonmethylene interrupted, V triand tetraenoic fatty acid esters. After hydroxylation of the double bonds with osmium tetroxide, the analysis of the poly-O-trimethylsilyl derivatives by gas liquid chromatography on S.C.O.T. columns combined with mass spectrometry revealed the presence of 19 monoenoic, 15 dienoic, and 9 trienoic as well as 3 tetraenoic fatty acid isomers including the normally occurring representatives of the (n−3), (n−6), (n−7), and (n−9) fatty acid families. The majority of the identified isomers can be coordinated to one of these families like 7–16∶1; 11–20∶1; 6,9–18∶2; 8,11–20∶2; 5,11–20∶2; 5,8,11–20∶3; 7,10,13–22∶3 to the (n−9) family, 11–18∶1; 13–20∶1; 5,11–18∶2; 7,13–20∶2; 6,11–18∶2; 6,9–16∶2; 8, 11–18∶2; 10,13–20∶2; 5,8,11–18∶3; 7,10,13–20∶3; 4,7,10,13–20∶4 to the (n−7) family and 11,14–20∶2; 5,11,14–20∶3; 6,9,12–18∶3; 8,11,14–20∶3; 5,8,11,14–20∶4; 7,10,13,16–22∶4 to the (n−6) family. All these naturally occuring isomers can be placed into a network of desaturation and chain elongation steps which allows certain conclusions about the substrate specificity of the Δ6-, Δ5-and Δ4-desaturase systems. The great number of isomers found in the (n−7) family indicates that the members of this family are actively metabolized in partial essential fatty acid deficiency.  相似文献   

5.
An icosatetraenoic fatty acid, though to be allcis-5,8,11,14-icosatetraenoic acid (arachidonic acid), was isolated from shrimp total lipid. The acid was subjected to partial reduction with hydrazine hydrate, with subsequent isolation of the monoenoic reaction products which were shown to becis in structure. These were then cleaved by periodate-permanganate oxidation and the resulting mono-and dicarboxylic acid were converted to methyl esters. Identification of the resulting mono- and dicarboxylic acids indicated that the original icosatetraenoic acid had the allcis-5,8,11,14 pattern of double bonds, and it was thus identified as arachidonic acid. Experiments were also performed to study the synthesis of arachidonic acid 20∶4(5,8,11,14) from linoleic acid, 18∶2(9,12) in microsomes prepared from shrimp hepatopancreas and tail muscle tissue. Each step of the pathway 18∶2(9,12)→18∶3(6,9,12)→20∶3(8,11,14)→20∶4(5,8,11, 14) was assayed separately, and the level of activity of each enzyme was expressed as percentage conversion of substrate to product. It was found that, in each step of the sequence, the enzyme activity in the shrimp tissue was very low compared to the activity found in rats. These and previous observations seem to indicate that the arachidonic acid in shrimp tissue originates mostly in the diet. Work performed by M.L. Lilly in partial fulfillment of the requirements for the Master of Science Degree.  相似文献   

6.
This study has utilized radiolabeled analogues of arachidonic acid to study the substrate specificity of elongation of long-chain polyunsaturated fatty acids. Human umbilical vein endothelial cells were incubated for 2–72 hr in medium supplemented with 0.9–2.6 μM [14C]fatty acid, and cellular glycerolipids were analyzed by gas-liquid chromatography with radioactivity detection. Elongation of naturally occurring C20 polyunsaturated fatty acids occurred with eicosapentaenoate (20∶5(n−3))>Mead acid (20∶3(n−9))>arachidonate (20∶4(n−6)). Chain length markedly influenced the extent of elongation of 5,8,11,14-tetraenoates (18∶4>19∶4>20∶4>21∶4); effects of initial double bond position were also observed (6,9,12,15–20∶4>4,7,10,13–20∶4. Neither 5,8,14- nor 5,11,14–20∶3 was elongated to the extent of 5,8,11–20∶3. Differences between polyunsaturated fatty acids were observed both in the initial rates and in the maximal percentages of elongation, suggesting that the content of cellular C20 and C22 fatty acids may represent a balance between chain elongation and retroconversion. Umbilical vein endothelial cells do not exhibit significant desaturation of either 22∶4(n−6) or 22∶5(n−3). By contrast, incubation with 5,8,11,14-[14C]18∶4(n−4) resulted in formation of both [14C]20∶5(n−4) and [14C]22∶5(n−4). The respective time courses for the appearances of [14C]22∶5(n−4) and [14C]20∶5(n−5) suggests Δ6 desaturation of [14C]22∶4(n−4) rather than Δ4 desaturation of [14C]20∶4(n−4).  相似文献   

7.
The activities of key enzymes in glycerolipid biosynthesis and fatty acid oxidation were compared using CoA esters of naturally occurring positional isomers of octadecatrienoic acids (18∶3) as the substrates. The trienoic acids employed were 9,12,15–18∶3 (α-18∶3), 6,9,12–18∶3 (γ-18∶3), and 5,9,12–18∶3 (pinolenic acid which is a fatty acid contained in pine seed oil, po-18∶3). The activities of microsomal glycerol 3-phosphate acyltransferase obtained with various 18∶3 were only slightly lower than or comparable with those obtained with palmitic (16∶0), oleic (18∶1), and linoleic (18∶2) acids. Mitochondrial glycerol 3-phosphate acyltransferase was exclusively specific for saturated fatty acyl-CoA. The activities of microsomal diacylglycerol acyltransferase measured with various polyunsaturated fatty acyl-CoAs were significantly lower than those obtained with 16∶0- and 18∶1-CoAs. Among the polyunsaturated fatty acids, γ-18∶3 gave the distinctly low activity. The Vmax values of the mitochondrial carnitine palmitoyltransferase I were significantly higher with α-18∶3 and po-18∶3 but not γ-18∶3, than with 16∶0 and 18∶2, while the apparent Km values were the same irrespective of the types of acyl-CoA used except for the distinctly low value obtained with γ-18∶3. The response to an inhibitor of the acyltransferase reaction, malonyl-CoA, was appreciably exaggerated with 18∶2, α-18∶3, and po-18∶3 more than with 16∶0 and 18∶1. However, the response with γ-18∶3 was the same as with 16∶0. Thus, some of glycerolipid biosynthesis and fatty acid oxidation enzymes could discriminate not only the differences in the degree of unsaturation of fatty acids but also the positional distribution of double bond among the naturally occurring 18∶3 acids.  相似文献   

8.
Lipids from five cultivars of highbush blueberries (Vaccinium corymbosum L.) were extracted and fractionated into neutral lipids (60–66%), glycolipids (20–22%) and phospholipids (14–18%). The major fatty acids in all fractions were palmitic (16∶0), oleic (18∶1), linoleic (18∶2), and linolenic (18∶3) acids. All lipid classes had a large concentration of C18 polyunsaturated acids (84–92%), indicating that blueberries are a rich source of linoleic and linolenic acids. Changes in the fatty acid composition of neutral lipids and phospholipids were not significantly different among the five cultivars, but significant differences were noted in the ratios of linoleic and linolenic acids in the glycolipids fraction.  相似文献   

9.
The fatty acids of three strains of extremely thermophilic bacteria and three strains of moderately thermophilic bacteria were examined by gas liquid chromatography. All the thermophiles contained straight, iso, and ante-iso branched fatty acids. Iso C17∶0 acid was abundant in both the moderately thermophilic strains (10–33%) and the extremely thermophilic strains (50–61%). The pair of fatty acids iso C15∶0 and iso C17∶0 was the predominant pair in both the moderately (34–64%) and extremely (76–87%) thermophilic strains. The pair of fatty acids ante-iso C15∶0 and ante-iso C17∶0 was present in larger amount in moderately (25–34%) than in extremely (8.5–15%) thermophilic strains. No hydroxy cyclopropane, or unsaturated fatty acids were found. One extreme thermophile,Flavobacterium thermophilum HB-8 was grown at 6 different culture temperatures from 49–82 C, and the changes of its fatty acid composition were studied. The ratios of iso C17∶0/iso C15∶0 and ante-iso C17∶0/ante-iso C15∶0 were much greater at higher culture temperatures, indicating chain elongation.  相似文献   

10.
This study examines the biohydrogenation and utilization of the C20 and C22 polyenoic fatty acids in ruminants. Eicosapentaenoic (20∶5n−3) and docosahexaenoic (22∶6n−3) acids were not biohydrogenated to any significant extent by rumen microorganisms, whereas C18 polyenoic fatty acids were extensively hydrogenated. The feeding of protected fish oil increased the proportion of 20∶5 from 1% to 13–18% and 22∶6 from 2% to 7–9% in serum lipids and there were reductions in the proportion of stearic (18∶0) and linoleic (18∶2) acids. The proportion of 20∶5 in muscle phospholipids (PL) increased from 1.5% to 14.7% and 22∶6 from 1.0% to 4.2%; these acids were not incorporated into muscle or adipose tissue triacylglycerols (TAG). In the total PL of muscle, the incorporated 20∶5 and 22∶6 substituted primarily for oleic (18∶1) and/or linoleic (18∶2) acid, and there was no consistent change in the porportion of arachidonic (20∶4) acid.  相似文献   

11.
The lipid composition of six thermophilic fungi (Myriococcum albomyces, Mucor miehei, Papulaspora thermophila, Rhizopus sp.,Thielavia thermophila (+)Thielavia thermophila (−), andTorula thermophila) was examined. The relative per cent total lipids (4.9–26.3%), neutral lipids (55.5–88.3%), polar lipids (11.7–44.6%) and the fatty acid profile of each lipid fraction was determined. The predominant fatty acids were 16∶0, 18∶0 and 18∶2, and lesser amounts of 12∶0, 14∶0, 15∶0, 16∶1, 16∶2, 17∶0 and 18∶3 were present. The total lipids contained an average of 0.96 double bonds per mole fatty acid (unsaturation index [USI]) the neutral lipids 0.86 USI and the polar lipids 0.84 USI, excluding the values forTorula thermophila. These data show a high degree of saturation and are consistent with data reported for other fungal thermophiles.Torula thermophila possessed abnormally high USI values (1.15–1.50) and was cultured at three different temperatures (25, 45 and 51 C). As the culture temperature ofTorula thermophila increased, the USI decreased. The USI of the polar lipids ofTorula thermophila at 25, 45 and 51 C were 1.50, 1.28 and 1.11, respectively. Thus the membrane lipids of this fungus appear unusual for a thermophile.  相似文献   

12.
For eight weeks young male rats were fed diets rich in 18∶2 (stock diet, or 10% corn oil, CO) or those devoid of 18∶2 (fat free, FF, or 10% hydrogenated coconut oil, HCNO). The CO and HCNO diets were fed in the absence or presence of eicosa-5,8,11,14-tetraynoic acid (TYA). When 18∶2 was excluded, an increase in the level of 16∶1, 18∶1 and 20∶3 and a decrease in 18∶2 was observed in the fatty acids of red cells. On feeding TYA, an increase in 18∶2 and in the case of the HCNO+TYA diet, a decrease of 12∶0 and 14∶0 was also observed. In all cases the levels of 20∶4 in erythrocyte fatty acids were similar. Saturated fatty acids were predominant in phosphatidyl choline (PC), lysophosphatidylcholine, (LPC) and sphingomyelin whereas unsaturated acids were predominant in phosphatidyl ethanolamine (PE), (PS), and phosphatidyl inositol (PI). Acids containing three or more double bonds comprised about 90% of the total acids in PI. In all the phospholipids, the characteristic changes in the composition of fatty acids were observed due to the exclusion of 18∶2 from the diet. However, changes due to the feeding of TYA were found only in PC and LPC. In rats fed the 18∶2-rich diet, about 60% of the red cells were discocytes. In those fed the 18∶2-free diet, the level of discocytes decreased to about 23%, and the levels of echinocytes II and III increased. The exclusion of 18∶2 for even a few days decreased the proportion of discocytes. The loss of discoid shape was reversed in a few days by feeding an 18∶2-rich diet. Fatty acid analysis of erythrocytes of rats of the various dietary manipulations showed that the change in the proportion of discocytes followed the change in the level of 18∶2.  相似文献   

13.
Analytical methods to obtain the detailed compositions of the fatty acids in oils containing more than one conjugated octadecatrienoic acid by open-tubular gas liquid chromatography (GLC) and by reversed-phase high performance liquid chromatography (HPLC) were established. Effective GLC separations ofcis,trans,trans-9,11,13-octadecatrienoic acid (ctt-9,11,13–18∶3),ctc-9,11,13–18∶3,ttc-9,11,13–18∶3,ttt-9,11,13–18∶3,ttc-8,10,12–18∶3, andttt-8,10,12–18∶3 were obtained with an opentubular column coated with the nonpolar liquid phase OV-1 using an instrument having all-glass carrier gas pathways. The HPLC method also gave satisfactory separations for the isomeric conjugated octadecatrienoates on the basis of number of thecis andtrans double bonds. Two or three minor conjugated trienoic acids were found along with the principal conjugated trienoic acid in tung oil, and seed oils of cherry,Prunus sp., Momordica charantia, Trichosanthes anguina, Punica granatum, Catalpa ovata, andCalendula officinalis. The mechanism for the formation of the conjugated trienoic acid mixtures in the seed oils is discussed. TheC. ovata seed oil also containedct andtt-9,12-octadecadienoic acids. Thett isomer is presumed to be a precursor ofttc-9,11,13–18∶3, the main conjugated trienoic acid in this oil.  相似文献   

14.
The fatty acid compositions of the seed lipids from four Ephedra species, E. nevadensis, E. viridis, E. przewalskii, and E. gerardiana (four gymnosperm species belonging to the Cycadophytes), have been established with an emphasis on Δ5-unsaturated polymethylene-interrupted fatty acids (Δ5-UPIFA). Mass spectrometry of the picolinyl ester derivatives allowed characterization of 5,9- and 5,11–18∶2; 5,9,12–18∶3; 5,9,12,15–18∶4; 5,11–20∶2; 5,11,14–20∶3; and 5,11,14,17–20∶4 acids. Δ5-UPIFA with a Δ11-ethylenic bond (mostly C20 acids) were in higher proportions than δ5-UPIFA with a δ9 double bond (exclusively C18 acids) in all species. The total δ5-UPIFA content was 17–31% of the total fatty acids, with 5, 11, 14–20∶3 and 5, 11, 14, 17–20∶4 acids being the principal δ5-UPFIA isomers. The relatively high level of cis-vaccenic (11–18∶1) acid found in Ephedra spp. seeds, the presence of its δ5-desaturation product, 5, 11–18∶2 acid (proposed trivial name: ephedrenic acid), and of its elongation product, 13–20∶1 acid, were previously shown to occur in a single other species, Ginkgo biloba, among the approximately 170 gymnosperm species analyzed so far. Consequently, Ephedraceae and Coniferophytes (including Ginkgoatae), which have evolved separately since the Devonian period (≈300 million yr ago), have kept in common the ability to synthesize C18 and C20 δ5-UPIFA. We postulate the existence of two δ5-desaturases in gymnosperm seeds, one possibly specific for unsaturated acids with a δ9-ethylenic bond, and the other possibly specific for unsaturated acids with a δ11-ethylenic bond. Alternatively, the δ5-desaturases might be specific for the chain length with C18 unsaturated acids on the one hand and C20 unsaturated acids on the other hand. The resulting hypothetical pathways for the biosynthesis of δ5-UPIFA in gymnosperm seeds are only distinguished by the position of 11–18∶1 acid. Moreover, 13C nuclear magnetic resonance spectroscopy of the seed oil from two Ephedra species has shown that δ5-UPIFA are essentially excluded from the internal position of triacylglycerols, a characteristic common to all of the Coniferophytes analyzed so far (more than 30 species), with the possibility of an exclusive esterification at the sn-3 position. This structural feature would also date back to the Devonian period, but might have been lost in those rare angiosperm species containing δ5-UPIFA.  相似文献   

15.
Lipids of some thermophilic fungi   总被引:1,自引:0,他引:1  
Total lipid content in the thermophilic fungi—Thermoascus aurantiacus, Humicola lanuginosa, Malbranchea pulchella var.sulfurea, andAbsidia ramosa—varied from 5.3 to 19.1% of mycelial dry weight. The neutral and polar lipid fractions accounted for 56.4 to 80.2% and 19.8 to 43.6%, respectively. All the fungi contained monoglycerides, diglycerides, triglycerides, free fatty acids, and sterols in variable amounts. Sterol ester was detected only inA. ramosa. Phosphatide composition was: phosphatidyl choline (15.9–47%), phosphatidyl ethanolamine (23.4–67%), phosphatidyl serine (9.3–17.6%), and phosphatidyl inositol (1.9–11.9%). Diphosphatidyl glycerol occurred in considerable quantity only inH. lanuginosa andM. pulchella var.sulfurea. Phosphatidic acid, detected as a minor component only inM. pulchella var.sulfurea andA. ramosa, does not appear to be a characteristic phosphatide of thermophilic fungi as suggested earlier. The 16∶0, 16∶1, 18∶0, 18∶1, and 18∶2 acids were the main fatty acid components. In addition,A. ramosa contained 18∶3 acid. Total lipids contained an average of 0.93 double bonds per mole of fatty acids, and neutral lipids tend to be more unsaturated than phospholipids.  相似文献   

16.
The fatty acid composition of individual phospholipids in subcellular fractions of sheep platelets and the asymmetrical distribution of phosphatidylethanolamine (PE) fatty acyl chains across the plasma membrane were examined. The main fatty acids of total lipid extracts were oleic (18∶1; 32–41%), linoleic (18∶2, 10–17%), stearic (18∶0; 13–15%), palmitic (16∶0; 11–15%) and arachidonic (20∶4; 8–12%) acids, with a saturated/unsaturated ratio of about 0.4. Each phospholipid class had a distinct fatty acid pattern. Sphingomyelin (SM) showed the highest degree of saturation (50%), with large proportions of behenic (22∶0), 18∶0 and 16∶0 acids. The main fatty acid in PE, phosphatidylserine (PS) and phosphatidylcholine (PC) was 18∶1n−9. Our findings suggest that fatty acids are asymmetrically distributed between thecholineversus the non-choline phospholipids, and also between plasma membranes and intracellular membranes. The transbilayer distribution of PE fatty acids in plasma membranes from non-stimulated sheep platelets was investigated using trinitrobenzenesulfonic acid (TNBS). A significant degree of asymmetry was found, which is a new observation in a non-polar cell. The PE molecules from the inner monolayer contained higher amounts of 18∶2 and significantly less 18∶1 and 20∶5 than those found in the outer monolayer, although no major differences were detected in the transbilayer distribution of total unsaturatedversus saturated PE acyl chains.  相似文献   

17.
Wax esters of secondary alcohols constitute 18–20% of the cuticular lipid extract ofMelanoplus packardii and 26–31% of the cuticular lipids ofMelanoplus sanguinipes. The total number of carbons in the wax esters range from 37–54 with 41 predominating in both species. The fatty acids ofM. packardii wax esters are 16∶0, 18∶0, 14∶0, 20∶0 and 12∶0 in decreasing quantity. The fatty acids ofM. sanguinipes wax esters are 18∶0, 20∶0, 16∶0 22∶0, 14∶0, 19∶0 and 17∶0 in decreasing quantity. The secondary alcohols from the wax esters ofM. packardii are C25, C23 and C27 in decreasing quantity, and the secondary alcohols of theM. sanguinipes are C23, C25, C21, C27, C24, C22 and C26 in decreasing quantity. Each secondary alcohol consists of two to four isomers with the hydroxyl group located near the center of the chain. Montana Agriculture Experiment Station, Journal Series No. 332.  相似文献   

18.
Yu-Yan Yeh 《Lipids》1988,23(12):1114-1118
A restricted maternal dietary intake (40% of ad libitum intake) is known to cause myelin deficit that is accompanied by decreased amounts of individual phospholipids and sphingolipids in brain myelin of suckling rats. This communication reports the effects of the same nutritional stress on the fatty acid composition of brain myelin lipids. In myelin of 19-day-old normally fed rats, palmitate (16∶0), stearate (18∶0) and oleate (18∶1) accounted for 80–90% of all fatty acids in phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Maternal dietary restriction resulted in deficits of total fatty acid content, but did not affect the proportional distribution of individual fatty acids among phospholipids. By contrast, longer chain (22- and 24-carbon) fatty acids accounted for more than half the fatty acid content of myelin cerebroside and sulfatide from the 19-day-old control rat pups. In undernourished rats of that age, proportions of lignocerate (24∶0) and nervonate (24∶1) in cerebroside and sulfatide were 40–50% lower than those in control rats. This, together with higher proportions of 16∶0, 18∶0 and 18∶1 and a higher ratio of C16−C20 to C22−C24 in under-nourished than in control rats, suggests an impairment in fatty acid chain elongation. Ten days of nutritional rehabilitation failed to restore the fatty acid imbalances; however, after an additional 5 days of ad libitum feeding, the experimental and control values were similar. The undernutrition results in hypomyelination, which is characterized by a proportional decrease in lignoceric and nervonic acids of sphingolipids.  相似文献   

19.
The unsaponifiable lipids and total fatty acids of a nonphotosynthetic diatom,Nitzschia alba, have been examined. The major fatty acids were found to be 14∶0, 16∶0, 18∶1, and 20∶5; small amounts of 15∶0, 16∶1, 18∶0, 18∶2, 18∶3, and 20∶4 acids also were present. The unsaponifiable lipids consisted mostly of sterols, with only traces (<0.1%) of hydrocarbons (chiefly C16, C18, and C28 normal olefins). The sterols contained brassicasterol (major) and clionasterol (minor), as well as traces of an unidentified sterol; clionasterol was present only in glycosidically bound form.  相似文献   

20.
The location of the double-bond systems of some conjugated diene and triene C18 fatty acids (C18∶2[9,11], C18∶2[10,12], C18∶3[9,11,13] and C18∶3[10,12,14]) derived from alkaline isomerization has been determined by gas chromatography/mass spectroscopy analysis of their 4,4-dimethyloxazoline derivatives. The positions of the double bonds were indicated by a characteristic mass separation of 12 atomic mass units for each olefinic bond. Furthermore, the structure assignments were supported by the presence of prominent formal allylic cleavage peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号