首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
网络应用服务(尤其是电子银行和电子商务)需要数据加密提供安全通信.很多应用服务器面临着执行大量计算稠密的加密挑战.CUDA(统一计算架构)是在GPU进行并行和通用计算的平台,能够利用现有显卡资源,以低成本的方式提升加密性能.在Nvidia GeForce G210显卡上实现CUDA的AES(高级加密标准)并行算法并且在AMD Athlon 7850上实现串行AES算法.实现的AES并行算法避免了同一线程块的线程同步和通信,提升了GPU的加速性能,加速比要比Manavski的AES-128并行算法提升2.66~3.34倍.在大数据量(至32MB)加密环境下探索AES并行算法的性能模型,并首次从加速效率角度分析加速性能.该并行AES算法在16核的GPU上能最高达到15.83倍的加速比和99.898%的加速效率.  相似文献   

2.
为提高图像处理领域协方差矩阵的计算效率,满足其在实时要求下的应用,借助GPU通用计算技术,结合CUDA编程模型,对协方差矩阵的计算进行有针对性的并行化优化,设计并实现一种高效的并行图像协方差矩阵算法。为在通用PC平台上使用协方差矩阵并满足实时性需求的各种图像处理应用提供了一个可行的解决方法,对其它领域涉及到协方差矩阵的实时计算也有良好的借鉴作用。与原有的CPU实现方法相比,GPU的效率有了平均数千倍的提升。  相似文献   

3.
GPU拥有高度并行性和可编码的特点,在大规模数据并行计算方面得到广泛应用。NTRU算法是一种安全性高,易于并行化的公钥密码算法。研究了NTRU算法基于CUDA的并行化实现技术,将计算中最耗时的卷积运算分解到多个线程并行计算,引入大量的独立并发的加解密线程块来完成整个加解密过程,并给出了具体的数据编码及存储结构、线程组织以及基于合并访问和共享内存的性能优化技术。实验结果表明,基于CUDA的NTRU加解密算法实现了硬件加速,相对于NTRU算法在CPU的实现,CUDA实现能够达到12.38 MB/s的吞吐量,可获得最大为95倍的加速比。  相似文献   

4.
基于压缩感知CS(Compressed Sensing)理论的稀疏磁共振图像MRI(Magnetic Resonance Imaging)重构算法包含大量的浮点运算,重构所花费的时间要远远大于傅里叶正反变换重构算法。针对该问题,利用图形处理器GPU(Graphic Processing Unit)强大的并行处理能力,在NVIDIA CUDA(Compute Unified Device Architecture)的框架上对正交匹配追踪OMP(Orthogonal Matching Pursuit)算法进行并行化的设计与实现。实验结果表明,基于GPU实现的算法具有较高的迭代重构速度,对1 0242大小的磁共振图像的重构仅为1.4秒,是CPU实现的24倍,可以满足实际应用对实时性的要求。  相似文献   

5.
为了充分利用图形处理器(GPU)的闲置资源,同时达到提高密码算法加密速度的目的,提出了一种在图形处理器上实现AES加密算法的方法,分别阐述了基于传统OpenGL的AES实现以及基于最新技术CUDA的AES实现,并对这两种方法的实现性能进行了分析,同时与传统CPU方法的实现性能进行了比较,基于CUDA的AES的实现速度达到了传统CPU上AES实现速度的19.6倍.  相似文献   

6.
GPU通用计算已经在很多领域中得到应用,包括金融、石油、天文学、流体力学、信号处理、电磁仿真、模式识别、视频压缩等领域。将GPU通用计算应用到P2P协议中,通过使用全局存储器和共享存储器两种方法把BitTorrent协议中的随机邻居节点选择算法和随机文件块选择算法(RUB)映射到GPU上,用GPU加速了BitTorrent协议文件块的分发。  相似文献   

7.
字符串匹配算法的应用非常广泛,在信息检索、信息安全等领域都起着关键的作用。近年来,由于GPU通用计算的高速发展,且GPU具有很强的并行计算能力和很高的存储器访问带宽,利用GPU来加速字符串匹配算法吸引了越来越多的关注。提出的改进的AC模式匹配算法,在对前人工作的基础上,进一步消除了output表的存储,将纹理存储器中的查表操作转换为数值比较操作,与改进前算法相比,速度提高了80%以上;进一步的,引入了多个可变参数,提高AC算法的有效数据匹配率,并优化线程块的大小,优化后的算法与采用一种特殊匹配方式的高效的PFAC算法相比,速度提高了9%以上。  相似文献   

8.
9.
贺怀清  孙希栋 《计算机应用》2012,32(7):1939-1942
针对串行情况下光子映射算法速度慢的问题,对光子映射算法并行化进行可行性分析,充分利用图像处理器(GPU)的统一设备计算架构(CUDA)的并行和计算能力,实现光子映射算法的并行化。同时针对算法中光子发射追踪阶段生成GPU线程数与光子数相同的方法的不足以及平均分配方法所造成的资源浪费等,提出线程之间协同工作的方法并采用动态平衡处理,使光子渲染速度提升了将近一倍。实验结果证明了多线程间协同工作及动态平衡相结合方法的有效性。  相似文献   

10.
针对现代优化算法在处理相对复杂问题中所面临的求解时间复杂度较高的问题,引入基于GPU的并行处理解决方法。首先从宏观角度阐释了基于计算统一设备架构CUDA的并行编程模型,然后在GPU环境下给出了基于CUDA架构的5种典型现代优化算法(模拟退火算法、禁忌搜索算法、遗传算法、粒子群算法以及人工神经网络)的并行实现过程。通过对比分析在不同环境下测试的实验案例统计结果,指出基于GPU的单指令多线程并行优化策略的优势及其未来发展趋势。  相似文献   

11.
精确 串匹配是计算机领域的一个经典问题。在大数据时代,海量的数据给串匹配问题带来巨大的挑战。当前,GPU的应用得到学术界和工业界的广泛关注。近年,基于GPU的串匹配算法研究已成为学术界的焦点。为展示近年的研究,本文综述了基于GPU的精确串匹配技术,针对不同的算法和GPU架构介绍精确串匹配技术在GPU上的改进:不同算法的改进具有差异性,研究时需扩展具体算法,并比较上述算法的优缺点。最后对评测指标进行介绍,展望其发展趋势。  相似文献   

12.
张硕  何发智  周毅  鄢小虎 《计算机应用》2016,36(12):3274-3279
基于统一计算设备架构(CUDA)对图形处理器(GPU)下的并行粒子群优化(PSO)算法作改进研究。根据CUDA的硬件体系结构特点,可知Block是串行执行的,线程束(Warp)才是流多处理器(SM)调度和执行的基本单位。为了充分利用Block中线程的并行性,提出基于自适应线程束的GPU并行PSO算法:将粒子的维度和线程相对应;利用GPU的Warp级并行,根据维度的不同自适应地将每个粒子与一个或多个Warp相对应;自适应地将一个或多个粒子与每个Block相对应。与已有的粗粒度并行方法(将每个粒子和线程相对应)以及细粒度并行方法(将每个粒子和Block相对应)进行了对比分析,实验结果表明,所提出的并行方法相对前两种并行方法,CPU加速比最多提高了40。  相似文献   

13.
自适应仿射传播聚类作为一种新兴的聚类算法,不需要指定初始类心以及类数,对解决聚类中类数不确定性问题非常有效.然而,自适应仿射传播聚类存在时间消耗过大的问题,当样本数量较大时运行速度缓慢.为了提高自适应仿射传播聚类的运行速度,基于NVIDIA公司的统一计算设备架构(Compute Unified Device Architecture,CUDA)和Matlab并行工具箱,提出了一种自适应仿射传播聚类的并行化方法.实验结果表明,基于GPU并行化的自适应仿射传播聚类在运行速度上有了明显提高,与该算法的串行执行方式相比,运行速度提升2倍以上,并且随着样本数量的增长,加速性能越来越好.  相似文献   

14.
非结构网格的生成在时间和内存上有一定的缺陷,这里提出了一种新的方法,命名为GPU-PDMG,是基于CUDA架构的GPU并行非结构网格生成技术。该技术结合了GPU的高速并行计算能力与Delaunay三角化的优点,在英伟达GPU模块下采用CUDA程序模型,开发出了加锁并行区划分技术,通过对NACA0012翼型、多段翼型等算例进行测试,分析此方法的加速比和效率,对其计算性能展开评估。实验结果表明,GPU-PDMG优于现存在的CPU算法的速度,在保证网格质量的同时,提高了效率。  相似文献   

15.
基于CUDA的并行粒子群优化算法的设计与实现   总被引:1,自引:0,他引:1  
针对处理大量数据和求解大规模复杂问题时粒子群优化(PSO)算法计算时间过长的问题, 进行了在显卡(GPU)上实现细粒度并行粒子群算法的研究。通过对传统PSO算法的分析, 结合目前被广泛使用的基于GPU的并行计算技术, 设计实现了一种并行PSO方法。本方法的执行基于统一计算架构(CUDA), 使用大量的GPU线程并行处理各个粒子的搜索过程来加速整个粒子群的收敛速度。程序充分使用CUDA自带的各种数学计算库, 从而保证了程序的稳定性和易写性。通过对多个基准优化测试函数的求解证明, 相对于基于CPU的串行计算方法, 在求解收敛性一致的前提下, 基于CUDA架构的并行PSO求解方法可以取得高达90倍的计算加速比。  相似文献   

16.
蚁群优化算法应用于复杂问题的求解是非常耗时的。文章在MATLAB环境下实现了一个基于GPU+CPU的并行MAX-MIN蚁群系统,并将其应用于旅行商问题的求解。让全部蚂蚁共享一个伪随机数矩阵,一个信息素矩阵,一个禁忌矩阵和一个概率矩阵,并运用了一个全新的基于这些矩阵的随机选择算法—AIR(All-In-Roulette)。文章还介绍了如何使用这些矩阵来构造并行蚁群优化算法,并与相应串行算法进行了比较。计算结果表明新的并行算法比相应串行算法要高效很多。  相似文献   

17.
一种基于OPENACC的GPU加速实现高斯模糊算法   总被引:1,自引:0,他引:1  
针对使用底层API进行GPU加速时存在的编码复杂以及效率低下等缺陷,文中试图利用基于中间层的OPENACC加速技术对传统的串行代码进行改写,从而达到改善开发效率,简化代码之目的.文中以传统的串行高斯模糊算法为处理对象,在其中添加OPENACC指令,提出基于OPENACC指令的GPU加速算法,并对算法流程进行了分析和说明.通过与原生CUDA和串行高斯的结果对比之后,发现随着处理像素数量的增加,串行高斯性能呈指数变化,而CUDA和OPENAC则呈线性变化.结果表明,该算法能在不改变原有非并行代码结构的基础上,通过增加高效的OPENACC指令即可获得与CUDA近似的图像处理质量和处理性能,且较CUDA具有更高的代码开发效率.  相似文献   

18.
针对深度学习图像分类场景中多GPU并行后传输效率低的问题,提出一种低时间复杂度的Ring All Reduce改进算法。通过分节点间隔配对原则优化数据传输流程,缓解传统参数服务器并行结构的带宽损耗。基于数据并行难以支撑大规模网络参数及加速延缓的问题,根据深度学习主干网络所包含的权重参数低于全连接层权重参数、同步开销小、全连接层权重大与梯度传输开销过高等特点,提出GPU混合并行优化算法,将主干网络进行数据并行,全连接层进行模型并行,并通过改进的Ring All Reduce算法实现各节点之间的并行后数据通信,用于基于深度学习模型的图像分类。在Cifar10和mini ImageNet两个公共数据集上的实验结果表明,该算法在保持分类精度不变的情况下可以获得更好的加速效果,相比数据并行方法,可达到近45%的提升效果。  相似文献   

19.
针对并行处理H.264标准视频流解码问题,提出基于CPU/GPU的协同运算算法。以统一设备计算架构(CUDA)语言作为GPU编程模型,实现DCT逆变换与帧内预测在GPU中的加速运算。在保持较高计算精度的前提下,结合CUDA混合编程,提高系统的计算性能。利用NIVIDIA提供的CUDA语言,在解码过程中使DCT逆变换和帧内预测在GPU上并行实现,将并行算法与CPU单机实现进行比较,并用不同数量的视频流验证并行解码算法的加速效果。实验结果表明,该算法可大幅提高视频流的编解码效率,比CPU单机的平均计算加速比提高10倍。  相似文献   

20.
基于GPU的并行优化技术*   总被引:2,自引:2,他引:2  
针对标准并行算法难以在图形处理器(GPU)上高效运行的问题,以累加和算法为例,基于Nvidia公司统一计算设备架构(CUDA)GPU介绍了指令优化、共享缓存冲突避免、解循环优化和线程过载优化四种优化方法。实验结果表明,并行优化能有效提高算法在GPU上的执行效率,优化后累加和算法的运算速度相比标准并行算法提高了约34倍,相比CPU串行实现提高了约70倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号