首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 130 毫秒
1.
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,在125℃的低温条件下,沉积了一系列不同厚度的本征微晶硅(μc-Si)薄膜。对材料的光电特性和结构特性的测试结果表明,低温条件下制备的μc-Si薄膜具有较厚的非晶孵化层,并且纵向结构演变较为明显。采用梯度H稀释技术,在沉积过程中不断降低H稀释度,改善了μc-Si薄膜的纵向均匀性。将此技术应用于非晶硅(a-Si)/μc-Si叠层电池的μc-Si底电池,在聚对苯二甲酸乙二醇酯(PET)塑料衬底上制备出初始效率达到6.0%的a-Si/μc-Si叠层电池。  相似文献   

2.
为获得单室沉积高效微晶硅(μc-Si)太阳电池,首先采用甚高频等离子体增强化学气相沉积(VHF-PECVD)技术制备了不同沉积条件下的本征μc-Si薄膜.通过对材料的结构和电学输运特性的研究,借鉴分室沉积的器件质量级μc-Si材料的经验,选取合适的本征层和P种子层处理B污染的技术,在单室中制备出光电转换效率为6.23%(1 cm2)的单结μc-Si电池.  相似文献   

3.
采用高压高功率的超高频等离子体增强化学气相沉积(VHF-PECVD)技术,在腐蚀后的7059玻璃、低晶化和高晶化的微晶硅(μc-Si:H)p型材料3种衬底上,通过改变沉积时间的方法,高速(沉积速率约为1 nm/s)沉积了不同厚度的μc-Si:H薄膜材料.测试其表面形貌及晶化率,比较了不同衬底上高速生长的μc-Si:H薄膜生长机制及微结构的差异,最后得到适于高速沉积pin μc-Si:H太阳电池的μc-Si:H p型材料应具备的条件.  相似文献   

4.
微晶硅薄膜制备中等离子体功率的调制作用   总被引:2,自引:1,他引:1  
对甚高频等离子体增强化学气相沉积(VHF-PECVD)法制备氢化微晶硅(μc-Si:H)薄膜中等离子体功率的影响进行了研究.原位光发射谱(OES)监测表明,SiH4等离子体中特征发光峰ISiH、Ihα、Ihβ和IH/ISiH均随等离子体激发功率的增加而增大,并且变化趋势因功率区间的不同而异.由厚度与Raman光谱测量可知,随着等离子体功率的增加,μc-Si:H薄膜的平均晶粒尺寸单调减小,而沉积速率与结晶体积分数则呈现出先增后减的变化,等离子体功率对薄膜的沉积速率与结构特征具有"调制作用".光暗电导率测量进一步得到,μc-Si:H薄膜的电导随等离子体功率增大而减小,暗电导率的变化与之相反,材料的光敏特性在较高功率条件下激剧恶化.研究结果表明,当前的沉积条件下,等离子体功率的优化值界于35~40 W间.  相似文献   

5.
对微晶硅薄膜晶体管,尤其对底栅型晶体管,在衬底和晶化层间存在一层非晶相起始层,这将严重影响器件性能.文中采用降低硅烷浓度的方法简便有效地减薄了用超高频化学气相法直接沉积的微晶硅薄膜起始层的厚度,得到起始层厚度小于20nm的微晶硅薄膜.在硅烷浓度为2%的条件下采用四版工艺制备了具有Al/SiNx/μc-Si/n+-μc-Si/Al结构的底栅微晶硅TFT,其开关比(Ion/Ioff)达到106,场效应迁移率为0.7cm2/(V·s),阈值电压为5V左右.  相似文献   

6.
高压高功率VHF-PECVD的微晶硅薄膜高速沉积   总被引:2,自引:2,他引:0  
采用高压高功率(hphP)甚高频等离子体强强化学气相沉积(VHF-PECVD)法对微晶硅(μc-Si:H)进行高速沉积,在最优沉积条件参数下对hphP和低压低功率(lplP)两组样品沉积速率、光电导、暗电导及光敏性等性能参数进行测试,得到了1.58 nm/s的较高沉积速率、光电性能优秀和更适合薄膜太阳能电池的μc-Si...  相似文献   

7.
采用超高频(VHF)结合高压(HP)的技术路线,在较高SiH4浓度(SC)下实现了微晶硅(μc-Si:H)薄膜的高速沉积,考察了衬底温度在化学气相沉积(CVD)过程中对薄膜的生长速率以及光电特性的影响.结果表明:薄膜微结构特性随衬底温度变化是导致薄膜电学特性随衬底温度变化的根本原因;HP与低压条件下沉积的μc-Si:H薄膜的特性随温度变化的规律不同,在试验温度范围内,HP高速沉积的μc-Si:H薄膜生长速率不同于低压时随温度升高而下降的趋势,而是先增大后趋于平稳,晶化率随温度升高也不是单调增加,而是先增加后减小.  相似文献   

8.
采用VHF-PECVD方法,以高氢稀释的硅烷为反应气体,低温条件下成功地制备了系列μc-Si∶H薄膜.对薄膜的厚度测量表明:增大激发频率和反应气压能有效提高沉积速率;随着等离子体功率密度的增大,沉积速率呈现出先增后减的变化.薄膜的Raman光谱、XRD及TEM等测试结果表明:提高衬底温度或减小硅烷浓度,可增大薄膜的结晶度和平均晶粒尺寸;等离子体激发频率的增大只影响薄膜的结晶度,并使结晶度出现极大值;薄膜中存在 (111)、(220)和(311)三个择优结晶取向,且各结晶取向的平均晶粒尺寸不同.  相似文献   

9.
VHF-PECVD法氢化微晶硅薄膜的低温制备   总被引:9,自引:2,他引:7  
采用VHF-PECVD方法,以高氢稀释的硅烷为反应气体,低温条件下成功地制备了系列μc-Si∶H薄膜.对薄膜的厚度测量表明:增大激发频率和反应气压能有效提高沉积速率;随着等离子体功率密度的增大,沉积速率呈现出先增后减的变化.薄膜的Raman光谱、XRD及TEM等测试结果表明:提高衬底温度或减小硅烷浓度,可增大薄膜的结晶度和平均晶粒尺寸;等离子体激发频率的增大只影响薄膜的结晶度,并使结晶度出现极大值;薄膜中存在 (111)、(220)和(311)三个择优结晶取向,且各结晶取向的平均晶粒尺寸不同.  相似文献   

10.
采用甚高频等离子体化学气相沉积(VHF-PECVD)技术在不同衬底温度条件下沉积了氢化微晶硅(μc—Si:H)薄膜,并通过光发射谱(OES)测量技术对沉积过程中硅烷(SiH4)等离子体进行了原位监测。结合对样品的沉积速率测量与结构表征,研究了衬底温度对薄膜沉积过程与结构特征的影响。实验结果表明:随着衬底温度的增加,μc—Si:H薄膜结晶体积分数与晶粒的平均尺寸单调增大,而沉积速率则呈现出先增后减的变化。对于当前的沉积系统,优化生长的衬底温度约为210℃,相应的μc-Si:H薄膜沉积速率为0.8nm/s,结晶体积分数与晶粒平均尺寸分别为60%和9nm。  相似文献   

11.
1nm/s高速率微晶硅薄膜的制备及其在太阳能电池中的应用   总被引:2,自引:0,他引:2  
采用甚高频等离子体增强化学气相沉积技术,在相对较高气压和较高功率条件下,制备了不同硅烷浓度的微晶硅材料.材料沉积速率随硅烷浓度的增加而增大,通过对材料的电学特性和结构特性的分析得知:获得了沉积速率超过1 nm/s高速率器件质量级微晶硅薄膜,并且也初步获得了效率达6.3%的高沉积速率微晶硅太阳电池.  相似文献   

12.
采用甚高频等离子体增强化学气相沉积技术,在相对较高气压和较高功率条件下,制备了不同硅烷浓度的微晶硅材料.材料沉积速率随硅烷浓度的增加而增大,通过对材料的电学特性和结构特性的分析得知:获得了沉积速率超过1 nm/s高速率器件质量级微晶硅薄膜,并且也初步获得了效率达6.3%的高沉积速率微晶硅太阳电池.  相似文献   

13.
VHF-PECVD制备微晶硅材料及电池   总被引:2,自引:2,他引:0  
采用VHF-PECVD技术制备了不同功率系列的微晶硅薄膜和电池,测试结果表明:制备的适用于微晶硅电池的有源层材料的暗电导和光敏性都在电池要求的参数范围内.低功率或高功率条件下,电池从n和p方向的喇曼测试结果是不同的,在晶化率方面材料和电池也有很大的差别,把相应的材料应用于电池上时,这一点很重要.采用VHFPECVD技术制备的微晶硅电池效率为5%,Voc=0.45V,Jsc=22mA/cm2,FF=50%,Area=0.253cm2.  相似文献   

14.
采用微区拉曼散射、傅立叶变换红外吸收和光热偏转谱对VHF-PECVD制备的不同衬底温度硅薄膜进行了微结构分析.结果表明:随衬底温度的升高,薄膜逐渐由非晶向微晶过渡,晶化率(Xc)逐渐增大,样品中的氢含量逐渐降低.在200~250℃条件下制备的微晶硅薄膜具有低的缺陷密度.通过优化工艺条件制备出了效率达7.1%的单结微晶硅太阳电池,电池厚度仅为1.2μm,且没有ZnO背反射电极.  相似文献   

15.
We study the high‐rate deposition of microcrystalline silicon in a large‐area plasma‐enhanced chemical‐vapor‐deposition (PECVD) reactor operated at 40.68 MHz, in the little‐explored process conditions of high‐pressure and high‐silane concentration and depletion. Due to the long gas residence time in this process, the silane gas is efficiently depleted using moderate feed‐in power density, thus facilitating up‐scaling of the process to large surfaces. As observed in more traditional deposition processes, the deposition rate and performance of device‐quality material are limited by the inter‐electrode gap of the reactor. We significantly increase the cell performances by reducing this gap. X‐ray diffractometry (XRD) and secondary ion mass spectroscopy (SIMS) are used to characterize the microcrystalline material deposited in the modified reactor at a rate of 1 nm/s. Comparison with a microcrystalline process at a low deposition rate demonstrates that the crystallographic orientation of the absorbing layer of the cell and the concentrations of contaminants are strongly correlated and dependent on the process. We use microcrystalline cells with absorber layer grown at a rate of 1 nm/s integrated as bottom cells in amorphous‐microcrystalline (micromorph) tandem solar cells using the superstrate configuration. We report an initial efficiency of 10.8% (9.6% stabilized) for a tandem cell with 1.2 cm2 surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
高气压耗尽RF-PECVD在高速生长优质微晶硅材料和太阳能电池方面具有巨大的优势.采用这种沉积方法,本征微晶硅材料的生长速度提高到0.32 nm/s,晶化率达58.2%.把这种高速生长的微晶硅材料用作太阳电池的本征吸收层,在没有优化工艺参数和没有采用ZnO增反电极时,电池的转换效率达到4.8%.  相似文献   

17.
在掺杂P室采用甚高频等离子体增强化学气相沉积(VHF—PECVD)技术,制备了不同硅烷浓度条件下的本征微晶硅薄膜.对薄膜电学特性和结构特性的测试结果分析表明:随硅烷浓度的增加,材料的光敏性先略微降低后提高,而晶化率的变化趋势与之相反;X射线衍射(xRD)测试表明材料具有(220)择优晶向.在P腔室中用VHF—PECVD方法制备单结微晶硅太阳能电池的i层和p层,其光电转换效率为4.7%,非晶硅/微晶硅叠层电池(底电池的p层和i层在P室沉积)的效率达8.5%.  相似文献   

18.
本文研究了甲烷流量对作为工业非晶硅光伏组件的p层材料—非晶碳化硅结构和光学性质的影响.p层非晶碳化硅薄膜采用硅烷和甲烷混合气体在射频等离子体增强化学气相沉积(RF-PECVD)设备中沉积制得,该设备是应用材料公司制造的尺寸为2.2 m × 2.6 m的8.5代系统.采用红外光谱和透射/反射谱分析与沉积工艺相关的键结构和光学性质.相同工艺条件下,当甲烷含量从3000 sccm增加到8850 sccm, p层非晶碳化硅薄膜的光学带隙逐步增加. p层非晶碳化硅薄膜的沉积速率随甲烷流量的增加而逐渐减小,其原因是硅烷-甲烷等离子体中SiH3粒子的减少.文中还通过在不同位置取样和分析沉积速率研究了大面积薄膜的均匀性.  相似文献   

19.
This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 µm of Si. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号