首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
超超临界百万千瓦汽轮机主调阀流场非稳态数值研究   总被引:1,自引:0,他引:1  
采用计算流体力学商用Fluent软件,对某百万千瓦超超临界汽轮机主调阀系统(主汽阀和调节汽阀组成的进汽系统)正常运行时的蒸汽稳态流场和快速关闭时的非稳态流场进行了全三维数值计算及分析.结果表明:稳定工作状态下,阀门全开时的阀组总压损失约为进口总压的1.23%,其中调节汽阀损失占总损失的57.52%;主汽阀、调节汽阀都为快开特性的阀,它们的相对升程大于30%时流量基本不可调.采用Fluent中的动网格技术,计算分析了调节汽阀从全开到快速关闭的非稳态过程中蒸汽的流动特性,并给出了调节汽阀快速关闭时的行程、流量及阀后压力与关闭时间的动态曲线.  相似文献   

2.
国内某650MW核电汽轮机现场进行非核蒸汽冲转时,发现主汽阀门关闭不到位,卡涩在50%开度状态无法继续关闭,阀门解体检查发现阀碟脱落,阀碟与摇臂连接螺柱齐根断裂。针对该问题,通过复核主汽阀结构设计、有限元应力分析、材质及断口分析、油动机设计,确定油动机缓冲间隙过大,使得阀门关闭时瞬间线速度过快,导致冲击力过大,是阀碟螺杆根部断裂的主要原因。  相似文献   

3.
朱丹书 《汽轮机技术》1996,38(4):221-228,235
介绍核电阀门动态分析的目的、计算原理与方法。讨论310MW核电汽轮机摇板式主汽阀、调节阀与蝶阀(再热主汽阀与调节阀)的动态性能,最后对摇板式主汽阀动态应力过大情况作了分析并提出了改进措施。  相似文献   

4.
汽轮机主汽阀设计要求具有很高的关闭速度,但高的关闭速度可能会造成阀碟和网座等关键部件撞击损坏,因此有必要对这一阀门关闭过程中部件动强度进行分析和研究.本文提出应用有限元应力分析方法,对关闭过程中阀碟和阀座的碰撞分别采用了弹性-刚性碰撞和弹性-弹性碰撞接触两种计算模型进行计算.并分析和研究了关闭速度和接触均匀度对计算结果的影响,总结出该分析计算方法用于工程设计可以得到比较符合实际情况的结果.  相似文献   

5.
采用非结构化四面体网格,对某600MW超超临界汽轮机组高压主汽调节联合阀的额定工况进行了数值模拟.针对3种不同结构的模型分别进行了计算,分析研究了阀门内部流场的流动特性,以及在主汽阀内加置挡板和滤网对内部流场和阀门损失的影响.  相似文献   

6.
摇板式主汽阀挠性阀座应力分析朱丹书1前言核电饱和汽轮机的主汽间与火电机组的再热主汽阀,由于蒸汽容积流量大,需要大尺寸的阀门,西屋及其它一些国外制造厂采用了摇板式阀。其结构与一般摇板式邀止间相似,但为反向布置,阀瓣关闭方向与主汽流相一致。阀座垂直于汽流...  相似文献   

7.
本文介绍阀门动态分析目的、计算原理与方法。讨论310MW核电汽轮机摇板式主汽阀、调节阀与蝶阀的动态性能,最后对摇板式主汽阀动态应力过大情况作了分析,并提出了改进措施。  相似文献   

8.
电站阀门关闭超时可能导致汽轮机在停机或甩负荷时超速,是影响机组安全的重要问题。许多电厂在做主汽阀、调节阀和抽汽逆止阀的关闭时间测试试验的过程中,都发现了本厂存在不同程度上的阀门关闭超时问题。从机械和热工两个方面对主汽阀、调节阀和抽汽逆止阀的关闭超时问题进行了分析,并提出了可行的解决方案,为各电厂解决超速隐患问题提供借鉴和参考。  相似文献   

9.
以某1000MW核电汽轮机中调阀为研究对象,利用FLUENT软件,采用滑移网格技术对其关闭过程中的动态特性进行三维非定常数值模拟。计算结果表明:中调阀关闭过程中,起初流场分布较为均匀,随着开度的减小,流场开始扰动剧烈,并出现涡流,速度分布也越来越不均匀。同时,压损、流阻系数和气动力矩随阀门开度的减小逐渐升高,而流量系数随阀门开度的减小逐渐降低。  相似文献   

10.
基于动网格与UDF技术的阀门流场数值模拟   总被引:7,自引:0,他引:7  
刘华坪  陈浮  马波 《汽轮机技术》2008,50(2):106-108
基于FLUENT软件提供的计算方法和物理模型,利用动网格及UDF(用户自定义函数)技术,对管路系统常见的4种阀门流动进行了动态数值模拟.该数值模拟方法打破了以往静态研究的局限,更真实地模拟了阀门的开关动态过程中的流动状态和阀体受力情况.动态仿真结果表明:随着阀门开度减小,流场变得复杂,出现复杂涡系,损失增加,同时阀门受力变化较大,会导致冲击与振动,对阀体工作精度与结构强度都非常不利,而且阀门开启过程与关闭过程并非简单反过程,尤其对于球阀,启闭过程中其流场特性与受力特点差别很大.  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
14.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

15.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

16.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

17.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

18.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

19.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

20.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号