首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete elastic modulus matrix of Li2Zn2(MoO4)3 single crystals has been measured for the first time. The sound velocity has been measured in different directions of the crystals by a pulse-phase method. The measurement results have been used to calculate elastic moduli. The sound velocity has been calculated in the three main crystallographic planes of the crystals.  相似文献   

2.
We have studied the luminescence spectra of Li2Sr1 − x Eu x SiO4 (x = 0.0001–0.01) solid solutions prepared by solid-state reactions and a sol-gel process in a reducing atmosphere. The spectra show a broad band in the range 500–700 nm, centered at 578 nm, which is due to the 4f 65d → 4f 7 transition. The luminescence excitation spectrum shows, in addition to bands due to Eu2+ 4f 7 → 4f 65d transitions, a strong band centered at 174 nm, attributable to absorption in the SiO44− group.  相似文献   

3.
We have prepared and characterized lithium titanate-based anode materials, Li4Ti5O12/C and Li4Ti5O12/C/Ag, using polyvinylidene fluoride as a carbon source. The formation of such materials has been shown to be accompanied by fluorination of the lithium titanate surface and the formation of a highly conductive carbon coating. The highest electrochemical capacity (175 mAh/g at a current density of 20 mA/g) is offered by the Li4Ti5O12-based anode materials prepared using 5% polyvinylidene fluoride. The addition of silver nanoparticles ensures a further increase in electrical conductivity and better cycling stability of the materials at high current densities.  相似文献   

4.
This paper examines the effect of doping level on the X-ray luminescence of TbO2-doped polycrystalline lithium tetraborate. It is shown that, when interpreting such spectra, it is convenient to proceed from the terms of free activator and constituent ions. We demonstrate that the emission lines of Tb3+ in doped polycrystalline lithium tetraborate are effectively excited in the band between 350 and 650 nm, which is predominantly due to electron transitions from the 5 D 3 and 5 D 4 excited states to spin-orbital levels of the 7 F J ground multiplet. The emission lines of lithium and boron in single-crystal and polycrystalline undoped lithium tetraborate are effectively excited in the band between 274 and 550 nm.  相似文献   

5.
A polycrystalline sample of Li3PO4:Tb3+ phosphor was successfully synthesized using solid-state diffusion method. This synthesis method is of low cost, low temperature and does not require any other atmospheres for the synthesis. The powder X-ray diffraction (PXRD), photoluminescence (PL) emission and excitation spectra, thermoluminescence (TL) and optically stimulated luminescence (OSL) were measured. The particle size was calculated using the Debye Scherrer formula and found to be 79.42 nm. PL emission spectra of Li3PO4:Tb3+ phosphor show the strong prominent peak at 544 nm corresponding to 5D4 to 7F5 transitions of Tb3+. The OSL sensitivity of prepared Li3PO4:Tb3+ phosphor was 50% of that of α-Al2O3:C. Its decay curve consists of three components with photoionization cross-sections 0.44 × 10?17, 3.09 × 10?17 and 23×10?17 cm2. The TL glow curve of the prepared sample consists of two characteristic peaks, which were deconvoluted using the peak fit software, and kinetic parameters were determined using the peak shape method. TL intensity was compared with that of the commercially available TLD-500 phosphor. OSL dose response was linear in the measured range and the minimum detectable dose (MDD) was found to be 67.42 μGy, while fading of the OSL signal was found to be about 27% in 4200 min after which the OSL signal stabilizes.  相似文献   

6.
We have studied the electric-field effect on crystallization processes in the Li3PO4-Li4GeO4-Li2MoO4-LiF system. In zero field, Li3+x P1?x Ge x O4 (x = 0.31) crystals were grown on the cathode under the conditions of this study. At low applied voltages (≤ 0.5 V), we obtained Li2MoO4, Li2GeO3, and Li1.3Mo3O8. In the range V = 0.5–1 V, crystals of Li3+x P1?x Ge x O4 solid solutions with x = 0.17, 0.25, 0.28, 0.29, and 0.36 were obtained. An applied electric field was shown to reduce the melting temperature of the starting mixtures and the crystallization onset temperature.  相似文献   

7.
Mn-doped Li3V2?x Mn x (PO4)3 nanocrystals with enhanced electrochemical properties for lithium-ion batteries were synthesized by aerosol process successfully. The nanocrystals synthesized from aerosol-assisted spray process have an average particle size smaller than 500 nm, with some initial particle size of about 100 nm. The Mn-doped Li3V2(PO4)3 cathode materials show higher capacity and coulombic efficiency than pure Li3V2(PO4)3 materials. Especially, the Mn-doped Li3V1.94Mn0.06(PO4)3 shows a capacity of 130 mAh/g in the voltage range of 3.0–4.4 V and a coulombic efficiency of 99.5 % at 1C. The results from XRD, SEM, HRTEM, and EIS suggested that lattice changes of Li3V2(PO4)3 due to Mn doping and the fine particles enabled by aerosol-assisted spray process can significantly reduce the charge-transfer resistance and improve the apparent Li+ diffusion coefficient of insertion/desertion in the electrodes, which were the critical reason of better electrochemical performance of Mn-doped Li3V2(PO4)3 cathode materials.  相似文献   

8.
The crystal structure of a previously unknown compound KNa3[(UO2)5O6(SO4)] [space group Pbca, a = 13.2855(15), b = 13.7258(18), c = 19.712(2) Å, V = 3594.6(7) Å3] was solved by direct methods and refined to R 1 = 0.055 for 3022 reflections with |F hkl | ≥ 4σ |F hkl |. In the structure there are five sym-metrically nonequivalent uranyl cations. They are linked by cationcation (CC) interactions to form a pentamer whose central cation is U(2)O 2 2+ forming two three-centered CC bonds. All the uranyl ions are coordinated in the equatorial plane by five O atoms, which leads to the formation of pentagonal bipyramids sharing common edges to form layers parallel to the (100) plane. The sulfate tetrahedron links the uranyl layers into a 3D framework. The K+ and Na+ cations are arranged in framework voids. A brief review of CC interactions in U(VI) compounds is presented.  相似文献   

9.
The 70Li2S·30P2S5 (mol%) glass was prepared by the melt quenching method and the glass–ceramic electrolytes were obtained by heating the prepared glass over crystallization temperatures. The superionic metastable Li7P3S11 crystal was formed by heating the glass in the temperature range from 280 and 360 °C. The conductivity of the glass–ceramics was enhanced by the precipitation and growth of the Li7P3S11 crystal, and the highest conductivity of 4.1 × 10−3 S cm−1 at room temperature was achieved in the glass–ceramic heated at 360 °C for 1 h. The Li7P3S11 crystal changed into the thermodynamically stable phase such as the Li4P2S6 crystal with further increasing heat treatment temperature and holding time, resulting in lowering conductivities of the glass–ceramics.  相似文献   

10.
Thermal analysis results indicate that the liquidus surface of the Li2WO4-WO3-Li2B4O7 system consists of the primary phase fields of Li2WO4, Li2B4O7, WO3, Li2WO4 · WO3 (congruent melting), 3Li2WO4 · 2Li2B4O7 (congruent melting), and Li2WO4 · 3WO3 (incongruent melting). Low-melting-point compositions are selected that are potentially attractive for the low-temperature synthesis of lithium tungsten bronze powders.  相似文献   

11.
12.
We have studied SO2 chemisorption on antimony-doped SnO2 samples annealed at 200 and 600°C. Increasing the annealing temperature from 200 to 600°C makes the sample surface more homogeneous. In the range 100–200°C, the electrical conductivity of the samples air-annealed at 600°C increases in proportion with the amount of absorbed SO2. Doping with 0.2 at % Sb ensures the largest increase in conductivity upon chemisorption.  相似文献   

13.
Li-ion electrolyte NASICON type Li2AlZr[PO4]3 has been prepared by Solid State Reaction method. Formation of the sample has been confirmed by XRD and TGA–DTA analysis. Electrical conductivity studies have been performed in the frequency range 42 Hz–5 MHz within the temperature range 523–623 K using aluminium as blocking electrodes. The conductivity has been found to be 1 × 10−5 S cm−1 at 623 K. Dielectric spectra show the decrease in dielectric constant with increase in frequency. Dielectric loss spectra reveal that dc conduction contribution predominates in the sample. Spectroscopic plots of complex modulus suggest the Non-Debye behaviour of the electrical relaxation within the temperature range studied.  相似文献   

14.
The formation of binary graphite intercalation compounds (GICs) with nitric and sulfuric acids in the presence of a strong oxidant has been studied by x-ray diffraction and potentiometry in a wide range of acid concentrations. The redox potential of the oxidizing solution and the intercalation ability of the acid are shown to influence the stage number (the number of graphite layers between two successive intercalate layers) of the forming GIC and the concentration ranges of GIC formation. The (\(E_{H_2 } \))-H 0 (redox potential of the oxidizing solution-Hammett function of the acid) stability fields of graphite nitrate and graphite bisulfate are presented. Our results are the first to demonstrate that KMnO4 extends the concentration ranges of GIC formation and reduces the threshold acid concentration for the synthesis of binary GICs (to 40%).  相似文献   

15.
A soft-magnetic amorphous Fe-P-Si alloy prepared using ferrophosphorus waste was tested for corrosion in 0.1 M Na2SO4. In a nonequilibrium state, the Fe82P16Si2 alloy interacts with the medium, but annealing and relaxation reduce the interaction, without influencing the magnetic properties of the alloy. The corrosion resistance of the alloy is comparable to that of Finemet (Fe-Si-B-Nb-Cu) materials.  相似文献   

16.
A large number of amorphous and nanocrystalline inexpensive alloys have been prepared from ferrophosphorus naturally doped with Si, V, Mn, and C. The alloys appear attractive for use in parts of transformers intended for operation in SO2-contaminated atmospheres. Electrochemical characterization results demonstrate that amorphous and nanocrystalline alloys of the Fe-P-Mn-V system, a part of the Fe-P-Si-Mn-V-C system, are comparable in corrosion resistance to the Fe77Si13B7Nb2Cu1 (Finemet) alloy, doped with expensive, deficient metals in the presence of boron and copper.  相似文献   

17.
XRD-pure Li4Mn5O12 spinels are obtained below 600 °C from oxalate and acetate precursors. The morphology consists of nanometric particles (about 25 nm) with a narrow particle size distribution. HRTEM and electron paramagnetic resonance (EPR) spectroscopy of Mn4+ are employed for local structure analysis. The HRTEM images recorded on nano-domains in Li4Mn5O12 reveal its complex structure. HRTEM shows one-dimensional structure images, which are compatible with the (111) plane of the cubic spinel structure and the (001) plane of monoclinic Li2MnO3. For Li4Mn5O12 compositions annealed between 400 and 800 °C, EPR spectroscopy shows the appearance of two types of Mn4+ ions having different metal environments: (i) Mn4+ ions surrounded by Li+ and Mn4+ and (ii) Mn4+ ions in Mn4+-rich environment. The composition of the Li+, Mn4+-shell around Mn4+ mimics the local environment of Mn4+ in monoclinic Li2MnO3, while the Mn4+-rich environment is related with that of the spinel phase. The structure of XRD-pure Li4Mn5O12 comprises nano-domains with a Li2MnO3-like and a Li4/3−x Mn5/3+x O4 composition rather than a single spinel phase with Li in tetrahedral and Li1/3Mn5/3 in octahedral spinel sites. The annealing of Li4Mn5O12 at temperature higher than 600 °C leads to its decomposition into monoclinic Li2MnO3 and spinel Li4/3−x Mn5/3+x O4.  相似文献   

18.
The oxidation of molybdenum and tungsten in hydrogen peroxide solutions and the effect of H2O2 on the selectivity of Mo and W dissolution in mixtures of concentrated nitric and sulfuric acids have been studied.  相似文献   

19.
Lithium iron silicate (Li2FeSiO4) is capable of affording a much higher capacity than conventional cathodes, and thus, it shows great promise for high-energy battery applications. However, its capacity has often been adversely affected by poor reaction activity due to the extremely low electronic and ionic conductivity of silicates. Here, we for the first time report on a rational engineering strategy towards a highly active Li2FeSiO4 by designing a carbon nanotube (CNT) directed three-dimensional (3D) porous Li2FeSiO4 composite. As the CNT framework enables rapid electron transport, and the rich pores allow efficient electrolyte penetration, this unique 3D Li2FeSiO4-CNT composite exhibits a high capacity of 214 mAh·g?1 and retains 96% of this value over 40 cycles, thus, outstripping many previously reported Li2FeSiO4-based materials. Kinetic analysis reveals a high Li+ diffusivity due to coupling of the migration of electrons and ions. This research highlights the potential for engineering 3D porous structure to construct highly efficient electrodes for battery applications.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号