首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用机械化学研磨的原理对锗片进行高速研磨。以研磨压力、主轴转速、磨料成分和磨料粒度为影响材料的去除率和工件表面粗糙度的主要因素,进行对比性实验,通过实验分析研究确定了的锗片研磨加工工艺,加工后的锗片能够满足使用需要。  相似文献   

2.
随着科学技术的飞跃发展,对零件的表面光整加工和棱边精加工提出越来越高的要求。在国内外精加工领域中?人们正在通过各种渠道,借助于多种能量形式,探索新的工艺途径。 电解磁力研磨加工工艺是将电化学加工复合到磁力研磨工艺上,适合于高强度、高硬度和高韧性等难加工材料的表面和棱边光整加工的新颖工艺。 本文在开发研制电解磁力研磨工艺装置的基础上,论述了电解磁力研磨加工原理和加工过程中各因  相似文献   

3.
通过对YJ2M9B研磨机进行改造,实现了单面、双面研磨的自由切换,并成功用于双面异质且可加工性差别大的超硬复合材料的研磨加工,可显著提高超硬复合材料研磨加工效率和质量。分析了研磨剂、研磨压力、研磨速度、研磨轨迹等工艺参数对研磨效率和质量的影响;采用正交试验确定了最佳研磨参数。  相似文献   

4.
磁性流体研磨法是70年代新开发研究的一种加工方法,具有高精度、高效率和加工表面无变质层的特点,特别适合难研磨材料和复杂形状表面的研磨加工,并能在研磨加工过程中控制研磨效率和研磨精度。磁性流体研磨法包括悬浮式磁性流体研磨和分离式磁性流体研磨两大类。国外对此进行了大量的研究工作。在悬浮式磁性流体研磨方面,对多种试件材料进行了研磨加工试验,分析了磁性流体研磨的影响因素,提出了非磁性物质存磁性流体内的受力公式,初步形成了用于生产的悬浮式磁性流体研磨加工技代。在分离式磁性流体研磨方面,分析了磨料的构成因素对研磨表面质量的影响,设计了多种分离式磁性流体研磨装置,并对多种试件材料进行研磨加工,也已初步用于生产。近几年,我国也已开始磁性流体研磨的  相似文献   

5.
磁性液体研磨技术   总被引:6,自引:2,他引:4  
对传统研磨方法和特点作了简介后,阐述了磁性液体研磨中使用的磁性液体功能材料、磁性液体研磨的原理和方法,以及它能达到的加工精度,例举了它的应用场合,并展示了它的最新研究动态和应用前景。  相似文献   

6.
张鹏  陈元芳  刘春 《工具技术》2005,39(7):33-36
介绍了模具曲面数字化磁力研磨加工的原理和特点,针对曲面磁力研磨加工中各部分研磨量不均匀的问题,分析了影响曲面研磨量的主要因素,提出了从磁粒选择、磁极形状和研磨轨迹等方面控制研磨量的方法。  相似文献   

7.
磁力研磨技术   总被引:7,自引:0,他引:7  
磁力研磨是一种微细特种加工方法,在此介绍了磁力研磨加工的原理及特点,对磁性磨料的制备技术及要点作了简述,并对磁场场强、场强梯度、磁极分布等研磨参数以及工件与磨粒相对运动方式对研磨质量的影响进行了讨论,同时报告了国内外磁力研磨技术研究及工业应用的现状。  相似文献   

8.
内圆表面磁性研磨加工的研究   总被引:13,自引:0,他引:13  
通过对薄壁套筒内表面磁性研磨加工的原理分析和影响加工特性的各种加工因素的实验研究,探讨内表面的最佳磁磨工艺方法,同时表明磁性研磨加工有着十分广阔的应用前景和较主的经济效益。  相似文献   

9.
磁力研磨是一种微细特种加工方法。在此介绍了磁力研磨加工的原理及特点,对磁性磨料的制备技术及要点作了简述,并对磁场场强、场强梯度、磁极分布等研磨参数以及工件与磨粒相对运动方式对研磨质量的影响进行了讨论,同时报告了国内外磁力研磨技术研究及工业应用的现状。  相似文献   

10.
一、概述挤压研磨是利用具有一定粘弹性的半流体物质,掺入磨料成为研磨剂,使其通过一套专用设备,将研磨剂反复挤过加工表面而产生研磨、抛光作用。挤压研磨工艺系统如图1所示。挤压研磨工艺已在模具、液压件、飞机发动机、宇航零件及电子计算机制造中得到广泛应用。它为各类电加工成形的模具和某些复杂曲面的零件研磨、抛  相似文献   

11.
光纤连接器端面研磨装置运动分析   总被引:4,自引:1,他引:3  
分析了一种具有两个自由度的双驱动行星式光纤连接器端面研磨装置的运动原理,并求解出光纤连接器在研磨时相对于研磨盘(研磨砂纸)的运动轨迹。通过引入定义"速比",建立了研磨装置两个独立主动件之间的转速关系。针对光纤连接器研磨中存在的问题,从速比入手,以运动轨迹曲线、研磨运动路程偏差、切削速度、速度周期变换系数为纽带,将研磨运动、研磨工艺以及研磨质量联系起来,得出了一组优化的光纤连接器研磨装置的运动参数。当系杆的转速设定为132 r/min时,根据粗、精研磨不同的工艺要求,其内齿轮的转速应在31~54 r/min调整。此时,速度周期变换系数小于2.2;运动路程偏差小于0.5%;研磨运动轨迹密集而不重复。实验证明了分析结果的正确。  相似文献   

12.
针对目前非球面加工的难题,提出了一种利用弯曲成形法制作磨具来实现非球面高效研磨的新方法。阐述了弯曲成形法高效研磨的原理,建立了磨具弯曲成形的数学模型,分析了磨具成形的等距线误差。实验结果表明:采用弯曲成形法制作的磨具成形精度较高,面形精度达到微米级;采用该方法研磨非球面零件是可行的,能满足中等精度的非球面零件研磨加工要求;效率高、成本低,有很好的开发和应用前景。  相似文献   

13.
研磨工艺对工件表面粗糙度及残余应力的影响   总被引:1,自引:0,他引:1  
通过试验探讨了研磨过程中磨料粒度、研磨压力和研磨速度等工艺参数对工件表面粗糙度及残余应力的影响。试验结果表明,磨料粒度和研磨压力对工件表面粗糙度的影响较大,而研磨速度的影响较小;研磨使工件表面产生残余压应力,日残余压应力随磨料粒度、研磨压力及研磨速度的增大而增大。  相似文献   

14.
针对传统半固结研磨盘由于盘面较软使得加工衬底面形精度难以保证的问题,提出一种蜂窝状结构的半固结磨料研磨盘的设计与制备方法。该研磨盘采用环氧树脂蜂窝结构作为支撑“骨架”,减小研磨盘的变形,以保证研磨衬底的面形精度,同时采用含有金刚石磨粒的凝胶体作为半固结研磨介质实现对衬底的研磨加工,获得了较好的衬底表面质量。基于该原理制备了一套新型研磨盘,并用于蓝宝石衬底的双面研磨加工。试验结果表明,研磨后衬底表面粗糙度较小,表面划痕和裂纹少,能够获得较好的表面质量;相应地,研磨后蓝宝石衬底的面形精度不仅没有变差,反而得到很大的改善,研磨后衬底的翘曲度、弯曲度和总厚度偏差均大幅减小。另外,研磨效率也相对较高,材料去除率可达0.3~0.4 μm/min。试验结果证明了该新型结构研磨盘不仅可以获得较好的表面质量和较高的研磨效率,同时还可提高衬底的面形精度,可用于面形精度要求较高的薄片衬底零件的精密研磨加工。  相似文献   

15.
对渐开线齿轮动态力研齿进行了理论分析和实验研究。基于以研代磨的设想,齿轮动态力研齿将研磨工艺用于硬齿面粉加工,其加工原理为,两被研齿轮在空载下以确定的速比,大转动惯量下高速稳态运转,研齿时保持速比不变,并周期性改变两齿轮的中心距,利用齿轮啮合时齿轮本身误差产生的齿面动态力,在研磨剂的作用下,修整齿轮误差达到两齿轮提高精度的目的。  相似文献   

16.
侯献军 《工具技术》2017,51(5):88-90
在微电子领域,石英晶片主要用于制造石英晶振器件。石英晶片的质量直接影响晶振的性能与可靠性,而研磨是保证石英晶片表面质量的重要工艺措施。本文采用行星式双面研磨机对石英晶片进行了研磨加工试验,研究了研磨区压强对加工效率的影响。试验结果表明,在相同工艺条件下,材料去除量随着研磨区压强的增大而增大。  相似文献   

17.
以NUMPOWER1060数控系统为主控单元,结合力-位控制和模糊推理的特点,提出了一种模糊自整定PID参数的力-位控制方法。利用高精度扭矩传感器和力传感器对Z轴电机输出扭矩与研磨压力之间的关系进行了标定,通过检测Z轴输出扭矩间接获得了研磨压力的大小。根据Z轴进给速度调节因子uv对研磨压力的影响规律,建立了模糊控制规则集,设计了模糊控制PID算法,保证了研磨压力的恒定。工件研磨试验表明该方法提高了工件的表面质量。  相似文献   

18.
行星式研磨是在传统研磨机构的基础上,通过改变行星结构获得理想研磨轨迹,从而来提高研磨精度和效率的一种研磨方式。以实现多工件双平面同时研磨为需求.设计了对其运动轨迹做了具体分析,根据加工要求设计出具体的行星式研磨盘结构,并进一步对该研磨盘进行了运动几何学仿真以验证其可用性。这种研磨机在保证研磨加工精度和加工品质的同时,还可在一定尺寸范围内实现不同截面、多个工件的同时研磨,提高了加工效率,降低了加工成本。  相似文献   

19.
提出了超声研磨加工螺旋锥齿轮的理论与方法,利用声弹性理论分析了超声波在齿面传播与反射的机理。超声研齿的材料去除以塑性流动去除为主,机理可归结为磨粒锤击微切削、弹跳冲击与研磨液空化效应。试验证明,超声研齿的材料去除率为普通研齿加工的3倍,且齿面质量明显提高,齿面粗糙度Ra为0.2μm,水平截距c为1.2μm。最优工艺参数组合中转矩为0.12 N.m、转速为600 r/m in、研磨剂浓度为20%,其中转矩对材料去除率的影响最为显著,达到68.11%;其次为转速。对最优工艺参数组合所作的验证试验,材料去除率MRR指标与预测值基本相符。  相似文献   

20.
对渐开线齿轮动态力研齿进行了理论分析和试验研究。基于以研代磨的设想,齿轮动态力研齿将研磨工艺用于硬齿面精加工,其加工原理为:两工件齿轮(两被研齿轮)在空载下以确定的速比(两齿轮的齿数比),在大转动惯量下高速稳态运转,研齿时保持两齿轮的速比不变,并周期性改变两齿轮的中心距,利用齿轮啮合时,齿轮本身误差产生的齿面动态力在研磨剂的作用下,修整齿轮误差达到两齿轮提高精度的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号