首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
动态发泡工艺参数对PS微孔塑料泡孔结构的影响   总被引:1,自引:1,他引:0  
以超临界CO2为发泡剂,用振动诱导发泡模拟装置研究了微孔塑料动态成型过程中气体饱和压力、压力释放速率、温度、气体饱和时间、稳态剪切速率、振动等工艺参数对聚苯乙烯(PS)微孔塑料泡孔结构的影响。研究发现,PS微孔塑料试样的泡孔结构随着气体饱和压力和压力释放速率的提高而得到改善,而温度、气体饱和时间、稳态剪切速率则存在一个最佳的操作范围,在此范围内制得的PS微孔塑料试样泡孔密度最大,泡孔尺寸最小。在稳态剪切速率一定的情况下,通过施加振动可以进一步改善泡孔结构.  相似文献   

2.
以超临界CO2为发泡剂,用动态发泡实验装置制备了PS和PVC微孔塑料,通过扫描电镜照片观察和研究了振动作用对PS和PVC微孔塑料泡孔结构的影响。结果表明,当剪切速率较低时,在PS发泡过程中施加较弱的振动作用即可显著提高泡孔密度,减小泡孔直径;而在PVC发泡过程中,只有施加相对较强的振动作用才能达到同样的效果。当剪切速率较高时,不论何种发泡体系,施加较弱的振动作用可以改善泡孔的形态;而施加较强的振动作用可能会产生较大的剪切热和脉动剪切应力,从而破坏泡沫的微孔结构。  相似文献   

3.
用超临界CO_2作为物理发泡剂,采用间歇釜式微孔发泡技术制备了热塑性聚烯烃弹性体(POE)发泡材料,应用扫描电子显微镜等测试手段探究了发泡温度及饱和压力对POE发泡材料表观结构和微观形态的影响。结果表明,发泡温度和饱和压力对材料泡孔结构和性能影响较大;当饱和压力为10 MPa、发泡温度为65℃时,所得的POE发泡材料表观密度较小、发泡倍率大,其内部泡孔密度较大,泡孔尺寸分布均匀。  相似文献   

4.
发泡工艺对超临界CO_2/PLA微孔发泡泡孔形态的影响   总被引:1,自引:0,他引:1  
研究了超临界CO2/PLA微孔发泡过程中,发泡温度、饱和压力、剪切速率对聚合物PLA泡孔形态的影响。结果表明,发泡温度对泡孔形态影响很大,温度降低,熔体强度增加,泡孔塌陷和合并减少,发泡材料的泡孔密度增大,泡孔尺寸减小,但温度太低时,熔体黏度和表面张力增加,发泡样品泡孔密度较低,泡孔壁较厚;压力对发泡形态的影响也是很显著的,压力太低,CO2的溶解度小,泡孔壁厚,泡孔分布不均匀。随着压力升高,CO2的溶解度增加,发泡样品的泡孔密度增加,泡孔更加均匀;随着转子转速增加,泡孔尺寸减小,气泡成核密度增大。但是转子转速过快,泡孔沿剪切的方向被拉长,泡孔取向严重,泡体质量变差。  相似文献   

5.
以超临界CO2为发泡剂,用自行研制的动态发泡模拟机将机械振动力场引入到PS微孔塑料成型过程中,初步研究了振动力场作用下温度对微孔塑料气泡形态的影响.实验发现,发泡温度越高,气泡核长大的速度越快,导致气泡合并甚至破裂.但发泡温度过低时,超临界CO2在PS熔体中的扩散速率较低,最终制品的泡孔密度小,气泡分布也不均匀.在微孔塑料成型过程中施加振动,有利于发泡剂在熔体中的分散和混合,从而在较低的温度(130℃)下制备出泡孔直径为18μm、泡孔密度为7×107个/cm3的微孔塑料.  相似文献   

6.
采用化学交联模压法制备了丙烯腈-苯乙烯-丁二烯共聚物(ABS)微孔发泡材料,研究了发泡温度、发泡压力及发泡时间对ABS微孔发泡材料气体的扩散行为及泡孔结构的影响,结果表明:气体吸收量随着发泡温度、发泡压力和发泡时间的增加,先增大后减小;随着气体吸收量的增加,制品的泡孔尺寸逐渐减小,泡孔密度逐渐增大,增加气体吸收量有利于提高发泡效果。当发泡温度为170℃、发泡压力为10 MPa、发泡时间为12min时,泡孔密度约为2.87×108个/cm3,可满足工业上微孔发泡材料泡孔密度的要求。  相似文献   

7.
微孔发泡材料的泡孔结构主要采用泡孔尺寸和泡孔密度来表征。泡孔尺寸一般使用SigmaScan和Image-pro两种图像分析软件测量,而泡孔密度主要用Kumar法和初始未发泡试样泡孔密度计算法计算。工艺条件的不同,特别是发泡温度、饱和压力、发泡时间、添加成核剂、引入另一聚合物相等工艺条件的改变,都会对发泡材料的泡孔形貌产生影响。发泡温度和饱和压力对泡孔形貌的影响尤甚,并且对泡孔结构的影响趋势是相同的,即随发泡温度或饱和压力的增加,泡孔结构由好变差,存在最佳值。加入合适的成核剂及引入另一聚合物相,亦能起到促进发泡的效果。  相似文献   

8.
采用自制的微孔发泡模拟机研究了温度和压力以及气体饱和时间对微孔聚碳酸酯(PC)泡孔结构的影响。结果表明,对于微孔PC泡沫塑料的成型存在一个最佳温度值;随着饱和压力升高,泡孔直径变小,泡孔的密度增大;气体饱和时间对PC泡沫塑料泡孔结构的影响不是很明显,在一定的饱和时间范围内,延长PC发泡时间有利于得到更均匀的泡孔结构。  相似文献   

9.
聚丙烯物理法微孔发泡操作条件与泡孔形态的关系研究   总被引:2,自引:0,他引:2  
以超临界CO2流体和丁烷为发泡剂,用快速释压的方法,对PP的微孔发泡进行了研究,得到了泡孔密度达10^9泡孔/cm^2,泡孔直径为20-50μm的微孔泡沫塑料颗粒。研究表明,改变饱和压力和温度可以控制发泡的泡孔结构和密度。使用CO2为发泡剂,当温度低于90℃或压力低于6.0MPa时,PP很难出现发泡。提高温度使泡孔出现五边形的结构但泡孔尺寸增大;增加饱和压力,泡孔密度增加,泡孔直径减小。用超临界CO2流体和丁烷作发泡剂时所得到的泡孔密度分别为2.0×10^8-10^9和2.0×10^5—10^7泡孔/cm^3,泡孔平均尺寸分别为20—50μm和100—500μm。用超临界CO2流体和丁烷混合气体作为发泡剂时泡孔直径则出现了双峰分布的结构;加入成核剂炭黑后所得到的泡孔尺寸大于未加成核剂的情况,其泡孔密度和泡孔直径分别为7.0×10^6—1.6×10^9泡孔/cm^3和55—300μm。  相似文献   

10.
以超临界CO2为发泡剂,用自制的动态模拟发泡装置研究了聚氯乙烯(PVC)配方中改性剂丙烯酸酯类高分子聚合物(ACR)含量和增塑剂邻苯二甲酸二辛酯(DOP)含量对PVC微孔塑料泡孔形态的影响.结果表明,在其他工艺条件和配方相同的情况下,ACR为4份时得到的PVC微孔泡沫塑料泡孔密度最大,泡孔粒径最小,DOP为2~6份时比较适合PVC微孔发泡,并且振动力场的引入有利于得到细小均匀的微孔结构.  相似文献   

11.
An open-celled structure was produced using polystyrene and supercritical carbon dioxide in a novel batch process. The required processing conditions to achieve open-celled structures were predicted by a theoretical model and confirmed by the experimental data. The theoretical model predicts that at least a saturation pressure of 130 bar and a foaming time between 9 and 58 s are required for this system to produce an open-celled structure. The foaming temperature range has been selected to be higher than the polymer glass transition temperature yet not higher than a temperature limit where the gas starts leaving the system. The experimental results in the batch foaming process verified the model substantially. The SEM pictures showed the presence of pores between the cells, and the mercury porosimetry test results verified the overall open-celled structure. Experimental results also showed that by increasing the saturation pressure and the foaming temperature, there was a drop in the time required for open-celled structure formation. At saturation pressure of 130 bar, foaming temperature of 150 °C and a foaming time of 60 s, open-celled microcellular polystyrene foams were obtained using supercritical CO2 in the batch process. Based on the results, a schematic diagram, depicting the process of foam structure formation from nucleation to bubble coalescence and gas escape from polymer, was proposed. Theoretical calculations showed that by increasing foaming time, cell size was increased and cell density was reduced and the experimental results verified this prediction.  相似文献   

12.
The process parameters for production of solid‐state microcellular polycarbonate using subcritical CO2 were explored. Sufficiently long foaming times were used to produce foams, where cell growth had completed, resulting in steady‐state structures. A wide range of foaming temperatures and saturation pressures below the critical pressure of CO2 were investigated, establishing the steady state process space for this polymer–gas system. Processing conditions are presented that produce polycarbonate foams where both the foam density and the average cell size can be controlled. The process space showed that we could produce foams at a constant density, while varying the cell size by and order of magnitude. At a relative density of 0.5, the average cell size could be varied from 4 to 40 μm. The ability to produce such a family of foams opens the possibility to explore the effect of microstructure, like cell size on the properties of cellular materials. It was found that the minimum foaming temperature for a given concentration of CO2, determined from the process space, agrees well with the predicted glass transition temperature of the gas–polymer solution. A characterization of the average cell size, cell size distribution, and cell nucleation density for this system is also reported. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

13.
A new process was used to prepare microcellular foams with supercritical carbon dioxide as the physical foaming agent in a batch. The foaming temperature range of the new process was about five times broader than that of the conventional one. Characterization of the cellular structure of the original polypropylene (PP) and PP/nano‐CaCO3 (nanocomposites) foams was conducted to reveal the effects of the blend composition and processing conditions. The results show that the cellular structure of the PP foams was more sensitive to the foaming temperature and saturation pressure variations than that of the nanocomposite foams. Uniform cells of PP foams are achieved only at a temperature of 154°C. Also, the low pressure of 20 MPa led to very small cells and a low cell density. The competition between the cell growth and cell nucleation played important role in the foam density and was directly related to the foaming temperature. Decreasing the infiltration temperature depressed the initial foaming temperature, and this resulted in significantly larger cells and a lower cell density. A short foaming time led to a skin–core structure; this indicated that a decrease in the cell size was found from skin to core, but the skin–core structure gradually disappeared with increasing foaming time. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
以超临界CO_2为发泡剂,采用釜压法在不同发泡工艺条件下制备了聚苯乙烯(PS)发泡试样,通过扫描电子显微镜对PS发泡试样的泡孔形貌进行了表征,探讨了不同发泡工艺对PS发泡试样发泡性能的影响。结果表明,随发泡温度的升高,PS发泡试样泡孔尺寸增大,泡孔密度下降,而泡沫密度呈现先降低后升高的趋势,发泡倍率与此相反;增大保压时间和保压压力,可提高试样的发泡效果。当发泡温度为136℃,保压压力为20 MPa,保压时间为4 h时,PS发泡试样的发泡效果最好,其泡沫密度为0.043 g/cm~3,发泡倍率为24.4,泡孔尺寸为59.8μm,泡孔密度为6.20×107个/cm~3。  相似文献   

15.
Novel microcellular PVC foams with a very homogenous cell distribution and cell densities ranging from 107 to 109 cells/cm3 have been created using carbon dioxide as the nucleating gas. Microcellular foams with relative densities (density of foam divided by the density of unfoamed polymer) ranging from 0.15 to 0.94 have been produced. It was found that the bubble nucleation density has and Arrhenius-type dependence on temperature, while the average bubble diameter is relatively independent of the foaming temperature. A majority of the cell growth was found to occur in the early stages of foaming.  相似文献   

16.
The effects of chemical foaming agent (CFA) types (endothermic versus exothermic) and concentrations as well as the influence of all‐acrylic processing aid on the density and cell morphology of extrusion‐foamed neat rigid PVC and rigid PVC/wood‐flour composites were studied. Regardless of the CFA type, the density reduction of foamed rigid PVC/wood‐flour composites was not influenced by the CFA content. The cell size, however, was affected by the CFA type, independent of CFA content. Exothermic foaming agent produced foamed samples with smaller average cell sizes compared to those of endothermic counterparts. The experimental results indicate that the addition of an all‐acrylic processing aid in the formulation of rigid PVC/wood‐flour composite foams provides not only the ability to achieve density comparable to that achieved in the neat rigid PVC foams, but also the potential of producing rigid PVC/wood‐flour composite foams without using any chemical foaming agents.  相似文献   

17.
Nanocomposite foams contain very fine cells because of the fillers in nano scale. Due to the limited size of the cells, the mechanical and physical properties of nanocomposite foams are improved compared to polymer foams. In this study PVC/clay nanocomposite foams containing various concentrations of nano-clay (1, 3 and 5 phr) were successfully prepared. The samples were placed under CO2 gas pressure at 5 MPa, by immersing in glycerin bath at 60, 70, 80 °C and 20, 30, 40 s, respectively, to form foams. The density and the cell size as a factor of nano-clay content, foaming time and temperature were investigated using Archimedes method and scanning electron microscopy, respectively. The minimum density was obtained in the sample containing 1 phr nanoclay prepared at 80 °C and 40 s. The minimum cell size was related to the sample containing 5 phr nanoclay at 60 °C and 20 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号