首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于光纤环形镜的滤波原理,提出利用级联结构光纤环形镜(FLM)实现掺铒光纤放大器(EDFA)增益平坦滤波的方案,并进行了相关实验研究.实验结果显示,使用级联FLM取得了明显的增益平坦效果,其1535-1557nm波长范围内的增益不平坦度由±5dB减小到±1dB.  相似文献   

2.
基于光纤环形镜的掺铒光纤放大器增益平坦化   总被引:3,自引:1,他引:3  
理论和实验上简要分析研究了由两段保偏光纤组成的光纤环形镜的反射谱特性,提出了利用保偏光纤环形镜进行掺铒光纤放大器(EDFA)增益平坦化的方法。应用该方法,在1527~1562nm范围内,EDFA自发辐射谱的不平坦度为±1dB。  相似文献   

3.
张岩滨  彭江得  刘小明 《中国激光》2002,29(11):987-990
对掺铒光纤L-波段的增益谱特性进行了理论模拟与实验,确定了形成平坦增益谱的最佳粒子数反转条件(~40%);采用两段级连分配抽运放大光路,小信号增益>36dB,最低噪声系数<4.4dB,在不加增益平坦滤波器的条件下,23±0.5dB的本征平坦增益带宽达到33.5nm(1569~1602.5nm)。  相似文献   

4.
L波段掺铒光纤放大器(EDFA)的增益介质具有本征增益平坦特性,但平坦增益值低,放大器实用性差,因此对放大器优化设计提高平坦增益有十分重要的意义。使用光纤环形镜(FLM)作为增益平坦滤波器进行L波段掺铒光纤放大器的增益平坦化实验,实现了高增益值的平坦输出。  相似文献   

5.
C波段和980 nm抽运的两段级联L波段掺铒光纤放大器   总被引:5,自引:3,他引:2  
刘彬  孙军强 《中国激光》2003,30(10):917-920
提出了由C波段和传统的 980nmLD两段级联抽运L波段信号的结构 ,C波段的功率和波长由掺铒光纤激光器控制。从实验和理论上分析了注入不同波长和功率的C波段对其增益的影响。设计的掺铒光纤放大器(EDFA)结构 ,在C波段波长为 15 2 5nm ,注入功率为 5mW时 ,功率为 - 2 0dBm ,波长为 15 80nm的信号增益提高了 7 7dB。  相似文献   

6.
为了研究不同增益光纤长度下1555nm高功率光纤放大器的输出功率,采用两级混合结构的方法,用掺铒光纤放大器和双包层铒镱共掺光纤放大器分别作为1级预放大器和2级主放大器。掺铒光纤放大器对信号光进行预放大,并提高放大器的信噪比;双包层铒镱共掺光纤放大器为主放大器,其双包层结构可以把更多的多模抽运光耦合进系统。对铒镱共掺光纤的最佳长度做了理论分析和实验验证,在信号光功率为10mW、掺铒光纤放大器的抽运功率为318.58mW、双包层铒镱共掺光纤放大器的抽运功率为11.71W、增益光纤长度为14m时,输出功率取得了2.11W的实验数据。在分析输出信号光谱时发现,L波段附近有放大自发辐射谱出现,这是选择的增益光纤过长导致的。结果表明,在光功率和信号光功率一定时,光纤放大器有一个最佳的光纤长度。这一结果对研究光纤放大器的高功率输出是有帮助的。  相似文献   

7.
报道了一种新型基于环形激光腔的增益钳制掺铒光纤放大器。得到了较好的增益钳制效果和增益平坦度,利用980nm半导体激光器泵浦12m长掺铒光纤形成激光增益,观测到 30nm增益带宽。通过反馈1520nm 激光,在可变衰减器不同值测量了输入信号从- 40 ~10dBm的增益,其小信号增益被钳制在16dB。可为40个波分复用(WDM)信道波长提供增益钳制及平坦的放大功能。  相似文献   

8.
L-波段掺铒光纤放大器增益谱特性研究   总被引:1,自引:1,他引:0  
张岩滨  彭江得  刘小明  历群  刘丹 《中国激光》2001,28(11):1013-1016
对掺铒光纤放大器 (EDFA)在L 波段 (L Band ,15 70~ 16 10nm)的增益谱特性进行了理论和实验研究。理论和实验研究得出在最佳反转粒子数密度 (N=0 39) 条件下 ,掺铒光纤L Band的平坦增益谱宽为 2 2nm(± 0 5dB) ,抽运功率与输入信号功率呈线性关系。实验测得L BandEDFA单信道小信号增益为 33dB。  相似文献   

9.
为了研究多波长掺铒光纤激光放大器的放大特性,在单频放大器的基础上,忽略放大自发辐射,推导了描述多波长掺铒双包层光纤放大器的稳态速率方程组,建立了多波长掺铒光纤放大器的理论模型。利用该模型对单波长放大、双波长放大、四波长放大的特性,进行了数值模拟和理论分析;以四波长的激光信号放大为例,对多波长掺铒光纤放大器的放大特性,均衡增益特性进行了研究。结果表明,在单波长注入情况下,光纤放大器的掺杂光纤存在最佳光纤长度为8m;与小信号放大不同,大功率掺铒光纤放大器在1530nm~1560nm之间增益谱趋于平坦;双波长放大输出功率差随着波长间隔的增加线性增大波长间隔为20nm时,通过调节输入信号功率比可以实现最大功率差6.855W的功率均衡补偿;四波长放大时,通过信号功率配比之后的四波长激光输出功率最大偏差为0.28W,在一定范围内实现了均衡增益。这一结果对于掺铒光纤激光的多波长激光输出以及在激光多普勒测风雷达中的应用具有一定帮助。  相似文献   

10.
基于光纤放大器增益谱的宽带平坦化发展需要,设计了一个两段铋基掺铒光纤(Bi-EDF)级联并携带一个C波段(1 530~1 565 nm)宽带光纤布拉格光栅(FBG)的双通结构型铋基掺铒光纤放大器(Bi-EDFA),从理论上研究了其对输入信号的放大特性。研究表明:FBG的引入可以使C和L波段(1 570~1 620 nm)信号分别经历不同长度Bi-EDF的双向传输,各自获得高增益放大,实现增益谱的宽带平坦化。在200 mW的1 480 nm双向对称泵浦下,第一级和第二级Bi-EDF长度分别为50 cm和170 cm时,对于波长间隔为2 nm、每路功率为-30 dBm的56路C+L波段信号的输入,Bi-EDFA高于30 dB的增益带宽达到了90 nm(1 530~1 620 nm),平均增益为35.7 dB,增益起伏仅为2.3 dB。同时,噪声系数得到明显改善。研究结果对于研制具有宽带、增益平坦的C+L波段Bi-EDFA具有实际指导意义。  相似文献   

11.
以60Co为辐射源, 通过地面辐射模拟实验, 对掺铒和铒镱共掺两种光纤放大器的性能变化进行了对比分析。实验结果表明, 在总剂量为40 krad的低剂量轨道辐射环境中, 信号光通过这两种光纤放大器后, 其中心波长及半宽都没有发生显著变化, 这为光纤放大器能够应用于空间光通信提供了保证; 在辐照过程中掺铒光纤放大器的增益下降3.91 dB, 而铒镱共掺光纤放大器的增益下降17.60 dB, 表明镱离子的存在使得铒镱共掺光纤放大器的抗辐射性能要明显弱于掺铒光纤放大器, 这也为不同发射功率下的空间光通信系统在选择合适类型的放大器时提供了一个有益的参考。  相似文献   

12.
超短环形腔布里渊掺铒光纤激光器   总被引:3,自引:1,他引:2  
周会娟  陈默  陈伟  孟洲 《中国激光》2012,39(7):702010-51
提出了一种超短环形腔布里渊掺铒光纤激光器(BEFL),腔长仅为10m。该BEFL以4m长的普通掺铒光纤(EDF)为激光增益介质,腔外布里渊抽运光和980nm抽运光的注入在掺铒光纤中,分别引入非线性布里渊增益和线性掺铒光纤放大器(EDFA)增益。实验结果表明,BEFL工作在单纵模状态,输出信噪比高(>40dB),抽运阈值低(~20mW),输出功率大(>10mW),且布里渊抽运光不仅决定BEFL的输出波长,更对其抽运阈值和出光功率有重要影响。  相似文献   

13.
孙静 《光电子.激光》2010,(11):1638-1640
提出了一种新型的低噪声掺Er光纤放大器(EDFA)。将光波长交错器的输入端口与普通EDFA的输出端相连接,用于降低噪声,信号光由光波长交错器的偶信道端口输出。利用光波长交错器的梳状反射特性,抑制EDFA的放大自发辐射(ASE),改善EDFA的噪声特性,使其具有低噪声的特点。采用4m长的掺Er光纤(EDF)作为增益介质,小信号功率为-26dBm时,在1530~1560nm带宽范围内,测得低噪声EDFA的噪声系数低于3.83dB,仅比噪声系数的量子极限3dB大0.83dB。  相似文献   

14.
针对L-band的泵浦效率不高的缺点改进了光链路:在EDFA的前端加入一个光纤环行镜用来反射铒纤产生的后向放大自发发射谱(ASE),通过实验和数值分析发现,在较大的波长范围内光纤环形镜(FLM)可以反射后向ASE的能量,平均增益在12.5 dB以上,提高了泵浦效率,证明这一结构对提高L-band EDEA的转换效率是简单有效的。  相似文献   

15.
研制出了铋镓铝共掺的高浓度掺铒光纤,这种掺铒光纤在1 530 nm处的吸收系数达到了28.5 dB/m.利用这种铋镓铝共掺的高浓度掺铒光纤制成了C波段和L波段的掺铒光纤放大器(EDFA),测试这两种放大器的荧光谱和增益谱线.利用2.5 m的高浓度掺铒光纤制作的C波段EDFA就实现了高增益.利用10 m这种掺铒光纤制作的L波段放大器实现了有效的I波段放大.  相似文献   

16.
To form a low noise figure and uniform shortpass band in optical fiber communications an improved automatic filtered power control (AFPC) pumping method is proposed here. A modulated single laser signal was entered in a closed feedback loop, in which the erbium-doped fiber amplifier (EDFA) was used as a part of the AFPC loop. Owing to the constant filtered signal and the quadrature phase shift delay inside the feedback loop, an optical pass band was uniformly formed. This EDFA attains high performance with a low noise figure simultaneously. The method was successfully applied to the fabrication of practical 12.0 m length of erbium-doped fiber pumped at 980 nm wavelength and 20 dBm power. Experiments prove that the signal gain of the loop remain flat in the range of 18.2 to 22.4 dB with a worst case error of ±0.5 dB and the noise figure was reduced by 2.2 dB at optimal, which correspond to a shortpass range of 40 nm band pass from 1525 nm to 1565 nm in wavelength. Of course, it should be possible to extent the system performance to all pumping configurations for semiconductor optical amplifiers. This provides the simplest and most economical way to transmit a well-defined band of modulated laser signal and to reject all other unwanted radiation.  相似文献   

17.
提出了一种基于掺Er光纤放大器(EDFA)的光纤环结构可调谐微波光子滤波器.在光纤环结构中引入掺Er光纤(EDF),通过增加泵浦功率提供增益来补偿器件损耗,从而增加了信号的有效采样数,大大改善了滤波器的性能.在泵浦功率为42.7 mW时,实现了通带3 dB带宽为0.15 MHz、Q值为100和抑制比为20 dB的微波光子滤波器.进一步通过在光纤环结构中引入可调光纤延迟线(TODL),实现了可调谐微波滤波器.  相似文献   

18.
提出了结构新颖的光纤环镜(FLM)全光自动增益箝制(OAGC)方案,进行了相关实验.通过控制抽运功率,调节腔内损耗和FLM,在环路内实现了波长为1 533.20 nm和1 559.05 nm的双波长激光振荡.对工作在透射式和反射式2种状态下的FLM,进行了信号波长为1 540 nm和1 550 nm的增益钳制实验.对于1 540 nm信号,在输入功率小于-14.88 dBm的范围内,增益波动ΔG<0.3 dB;对于1 550 nm信号,在输入功率小于-16.51 dBm的范围内 ,增益波动ΔG<0.1 dB.实验结果显示,FLM采用透射和反射方式均能达到增益箝制目的,而且得到的信号输出特性几乎一致,表明了这两种方案的等效性.  相似文献   

19.
1.48μmLD双向泵浦掺铒光纤放大器的研究   总被引:2,自引:0,他引:2  
研究了1.48μmLD双向泵浦低掺杂铒光纤放大器的增益特性和饱和输出特性,研制了一种掺铒光纤放大器,小信号净增益达26.5dB,3dB小信号增益下降时的净饱和输出功率为3dBm,最大净输出功率为9dBm。  相似文献   

20.
掺铒光纤放大器的最佳光纤长度和增益特性   总被引:1,自引:0,他引:1  
本文用三能级系统的速率方程建立了掺铒光纤放大器近似理论模型。在有激发态吸收时,各种泵浦波长下均获得了掺铒光纤的最佳长度。就增益随信号光及泵浦光光强的变化作了分析。通过对增益谱分析发现改变掺铒光纤长度可改变增益带宽,为掺铒光纤放大器在波分复用光纤通信系统中的应用提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号