首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing non‐precious‐metal bifunctional oxygen reduction and evolution reaction (ORR/OER) catalysts is a major task for promoting the reaction efficiency of Zn–air batteries. Co‐based catalysts have been regarded as promising ORR and OER catalysts owing to the multivalence characteristic of cobalt element. Herein, the synthesis of Co nanoislands rooted on Co–N–C nanosheets supported by carbon felts (Co/Co–N–C) is reported. Co nanosheets rooted on the carbon felt derived from electrodeposition are applied as the self‐template and cobalt source. The synergistic effect of metal Co islands with OER activity and Co–N–C nanosheets with superior ORR performance leads to good bifuctional catalytic performances. Wavelet transform extended X‐ray absorption fine spectroscopy and X‐ray photoelectron spectroscopy certify the formation of Co (mainly Co0) and the Co–N–C (mainly Co2+ and Co3+) structure. As the air‐cathode, the assembled aqueous Zn–air battery exhibits a small charge–discharge voltage gap (0.82 V@10 mA cm?2) and high power density of 132 mW cm?2, outperforming the commercial Pt/C catalyst. Additionally, the cable flexible rechargeable Zn–air battery exhibits excellent bendable and durability. Density functional theory calculation is combined with operando X‐ray absorption spectroscopy to further elucidate the active sites of oxygen reactions at the Co/Co–N–C cathode in Zn–air battery.  相似文献   

2.
Synergistic improvements in the electrical conductivity and catalytic activity for the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) are of paramount importance for rechargeable metal–air batteries. In this study, one‐nanometer‐scale ultrathin cobalt oxide (CoOx) layers are fabricated on a conducting substrate (i.e., a metallic Co/N‐doped graphene substrate) to achieve superior bifunctional activity in both the ORR and OER and ultrahigh output power for flexible Zn–air batteries. Specifically, at the atomic scale, the ultrathin CoOx layers effectively accelerate electron conduction and provide abundant active sites. X‐ray absorption spectroscopy reveals that the metallic Co/N‐doped graphene substrate contributes to electron transfer toward the ultrathin CoOx layer, which is beneficial for the electrocatalytic process. The as‐obtained electrocatalyst exhibits ultrahigh electrochemical activity with a positive half‐wave potential of 0.896 V for ORR and a low overpotential of 370 mV at 10 mA cm?2 for OER. The flexible Zn–air battery built with this catalyst exhibits an ultrahigh specific power of 300 W gcat ?1, which is essential for portable devices. This work provides a new design pathway for electrocatalysts for high‐performance rechargeable metal–air battery systems.  相似文献   

3.
Developing efficient and low‐cost defective carbon‐based catalysts for the oxygen reduction reaction (ORR) is essential to metal–air batteries and fuel cells. Active sites engineering toward these catalysts is highly desirable but challenging to realize boosted catalytic performance. Herein, a sandwich‐like confinement route to achieve the controllable regulation of active sites for carbon‐based catalysts is reported. In particular, three distinct catalysts including metal‐free N‐doped carbon (NC), single Co atoms dispersed NC (Co–N–C), and Co nanoparticles‐contained Co–N–C (Co/Co–N–C) are controllably realized and clearly identified by synchrotron radiation‐based X‐ray spectroscopy. Electrochemical measurements suggest that the Co/Co–N–C catalyst delivers optimized ORR performance due to the rich Co–Nx active sites and their synergistic effect with metallic Co nanoparticles. This work provides deep insight for rationally designing efficient ORR catalyst based on active sites engineering.  相似文献   

4.
Highly active and durable bifunctional oxygen electrocatalysts are of pivotal importance for clean and renewable energy conversion devices, but the lack of earth‐abundant electrocatalysts to improve the intrinsic sluggish kinetic process of oxygen reduction/evolution reactions (ORR/OER) is still a challenge. Fe‐N‐C catalysts with abundant natural merits are considered as promising alternatives to noble‐based catalysts, yet further improvements are urgently needed because of their poor stability and unclear catalytic mechanism. Here, an atomic‐level Fe‐N‐C electrocatalyst coupled with low crystalline Fe3C‐Fe nanocomposite in 3D carbon matrix (Fe‐SAs/Fe3C‐Fe@NC) is fabricated by a facile and scalable method. Versus atomically FeNx species and crystallized Fe3C‐Fe nanoparticles, Fe‐SAs/Fe3C‐Fe@NC catalyst, abundant in vertical branched carbon nanotubes decorated on intertwined carbon nanofibers, exhibits high electrocatalytic activities and excellent stabilities both in ORR (E1/2, 0.927 V) and OER (EJ=10, 1.57 V). This performance benefits from the strong synergistic effects of multicomponents and the unique structural advantages. In‐depth X‐ray absorption fine structure analysis and density functional theory calculation further demonstrate that more extra charges derived from modified Fe clusters decisively promote the ORR/OER performance for atomically FeN4 configurations by enhanced oxygen adsorption energy. These insightful findings inspire new perspectives for the rational design and synthesis of economical–practical bifunctional oxygen electrocatalysts.  相似文献   

5.
A transition‐metal–nitrogen/carbon (TM–N/C, TM = Fe, Co, Ni, etc.) system is a popular, nonprecious‐metal oxygen reduction reaction (ORR) electrocatalyst for fuel cell and metal–air battery applications. However, there remains a lack of comprehensive understanding about the ORR electrocatalytic mechanism on these catalysts, especially the roles of different forms of metal species on electrocatalytic performance. Here, a novel Cu?N/C ORR electrocatalyst with a hybrid Cu coordination site is successfully fabricated with a simple but efficient metal–organic‐framework‐based, metal‐doping‐induced synthesis strategy. By directly pyrolyzing Cu‐doped zeolitic‐imidazolate‐framework‐8 polyhedrons, the obtained Cu?N/C catalyst can achieve a high specific surface area of 1182 m2 g?1 with a refined hierarchical porous structure and a high surface N content of 11.05 at%. Moreover, regulating the Cu loading can efficiently tune the states of Cu(II) and Cu0, resulting in the successful construction of a highly active hybrid coordination site of N?Cu(II)?Cu0 in derived Cu?N/C catalysts. As a result, the optimized 25% Cu?N/C catalyst possesses a high ORR activity and stability in 0.1 m KOH solution, as well as excellent performance and stability in a Zn–air battery.  相似文献   

6.
Herein, a new type of cobalt encapsulated nitrogen‐doped carbon (Co@NC) nanostructure employing ZnxCo1?x(C3H4N2) metal–organic framework (MOF) as precursor is developed, by a simple, ecofriendly, solvent‐free approach that utilizes a mechanochemical coordination self‐assembly strategy. Possible evolution of ZnxCo1?x(C3H4N2) MOF structures and their conversion to Co@NC nanostructures is established from an X‐ray diffraction technique and transmission electron microscopy analysis, which reveal that MOF‐derived Co@NC core–shell nanostructures are well ordered and highly crystalline in nature. Co@NC–MOF core–shell nanostructures show excellent catalytic activity for the oxygen reduction reaction (ORR), with onset potential of 0.97 V and half‐wave potential of 0.88 V versus relative hydrogen electrode in alkaline electrolyte, and excellent durability with zero degradation after 5000 potential cycles; whereas under similar experimental conditions, the commonly utilized Pt/C electrocatalyst degrades. The Co@NC–MOF electrocatalyst also shows excellent tolerance to methanol, unlike the Pt/C electrocatalyst. X‐ray photoelectron spectroscopy (XPS) analysis shows the presence of ORR active pyridinic‐N and graphitic‐N species, along with CoNx? Cy and Co? Nx ORR active (M–N–C) sites. Enhanced electron transfer kinetics from nitrogen‐doped carbon shell to core Co nanoparticles, the existence of M–N–C active sites, and protective NC shells are responsible for high ORR activity and durability of the Co@NC–MOF electrocatalyst.  相似文献   

7.
As one of the alternatives to replace precious metal catalysts, transition‐metal–nitrogen–carbon (M–N–C) electrocatalysts have attracted great research interest due to their low cost and good catalytic activities. Despite nanostructured M–N–C catalysts can achieve good electrochemical performances, they are vulnerable to aggregation and insufficient catalytic sites upon continuous catalytic reaction. In this work, metal–organic frameworks derived porous single‐atom electrocatalysts (SAEs) were successfully prepared by simple pyrolysis procedure without any further posttreatment. Combining the X‐ray absorption near‐edge spectroscopy and electrochemical measurements, the SAEs have been identified with superior oxygen reduction reaction (ORR) activity and stability compared with Pt/C catalysts in alkaline condition. More impressively, the SAEs also show excellent ORR electrocatalytic performance in both acid and neutral media. This study of nonprecious catalysts provides new insights on nanoengineering catalytically active sites and porous structures for nonprecious metal ORR catalysis in a wide range of pH.  相似文献   

8.
Metal phosphides and heteroatom‐doped carbons have been regarded as promising candidates as bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, both have suffered from stability issues during repeated ORR and OER operations in zinc–air batteries (ZABs). Herein, this study reports a versatile cobalt‐based hybrid catalyst with a 1D structure by integrating the metal‐organic framework‐derived conversion approach and an in situ crosslinking method. Among them, the 1D hybrid catalyst composed of ultrasmall cobalt phosphide nanoparticles supported by nitrogen‐, sulfur‐, phosphorus‐doped carbon matrix shows remarkable bifunctional activity close to that of the benchmark precious‐metal catalysts along with an excellent durability in the full potential range covering both the OER and ORR. The overall overpotential of the rechargeable ZABs can be greatly reduced with this bifunctional hybrid catalyst as an air‐electrode, and the cycling stability outperforms the commercial Pt/C catalyst. It is revealed that the cobalt phosphide nanoparticles are in situ converted to cobalt oxide under the accelerated conditions during OER (and/or ORR) of the ZABs and reduces the anodic current applied to the carbon. This contributes to the stability of the carbon material and in maintaining the high initial catalytic properties of the hybrid catalyst.  相似文献   

9.
Heteroatom‐doped Fe‐NC catalyst has emerged as one of the most promising candidates to replace noble metal‐based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular‐level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole–thiophene copolymer pyrolysis strategy to synthesize Fe‐isolated single atoms on sulfur and nitrogen‐codoped carbon (Fe‐ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe‐ISA/SNC shows a volcano‐type curve with the increase of sulfur doping. The optimized Fe‐ISA/SNC exhibits a half‐wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe‐isolated single atoms on nitrogen codoped carbon (Fe‐ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe‐ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X‐ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate‐limiting reductive release of OH* and therefore improved the overall ORR efficiency.  相似文献   

10.
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm?2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.  相似文献   

11.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious‐metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double‐shelled hybrid nanocages with outer shells of Co‐N‐doped graphitic carbon (Co‐NGC) and inner shells of N‐doped microporous carbon (NC) by templating against core–shell metal–organic frameworks. The double‐shelled NC@Co‐NGC nanocages well integrate the high activity of Co‐NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn–air batteries. First‐principles calculations reveal that the high catalytic activities of Co‐NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow‐site C atoms with respect to the Co lattice in the Co‐NGC structure is a vital rate‐determining step to achieve excellent bifunctional electrocatalytic activity.  相似文献   

12.
To maximize the utilizing efficiency of cobalt (Co) and optimize its catalytic activity and stability, engineering of size and interfacial chemical properties, as well as controllable support are of ultimate importance. Here, the concept of coating uniform thin Co/N‐doped carbon layers into the mesopore surfaces of mesoporous silica is proposed for heterogeneous aqueous catalysis. To approach the target, a one‐step solvent‐free melting‐assisted coating process, i.e., heating a mixture of a cobalt salt, an amino acid (AA), and a mesoporous silica, is developed for the synthesis of mesoporous composites with thin Co/N‐doped carbon layers uniformly coated within mesoporous silica, high surface areas (250–630 m2 g−1), ordered mesopores (7.0–8.4 nm), and high water dispersibility. The strong silica/AA adhesive interactions and AA cohesive interactions direct the uniform coating process. The metal/N coordinating, carbon anchoring, and mesopore confining lead to the formation of tiny Co nanoclusters. The carbon intercalation and N coordination optimize the interfacial properties of Co for catalysis. The optimized catalyst exhibits excellent catalytic performance for tandem hydrogenation of nitrobenzene and dehydrogenation of NaBH4 with well‐matched reaction kinetics, 100% conversion and selectivity, high turnover frequencies, up to ≈6.06 molnitrobenzene molCo−1 min−1, the highest over transition‐metal catalysts, and excellent stability and magnetic separability.  相似文献   

13.
The oxygen evolution reaction (OER) catalytic activity of a transition metal oxides/hydroxides based electrocatalyst is related to its pseudocapacitance at potentials lower than the OER standard potential. Thus, a well‐defined pseudocapacitance could be a great supplement to boost OER. Herein, a highly pseudocapacitive Ni‐Fe‐Co hydroxides/N‐doped carbon nanoplates (NiCoFe‐NC)‐based electrocatalyst is synthesized using a facile one‐pot solvothermal approach. The NiCoFe‐NC has a great pseudocapacitive performance with 1849 F g?1 specific capacitance and 31.5 Wh kg?1 energy density. This material also exhibits an excellent OER catalytic activity comparable to the benchmark RuO2 catalysts (an initiating overpotential of 160 mV and delivering 10 mA cm?2 current density at 250 mV, with a Tafel slope of 31 mV dec?1). The catalytic performance of the optimized NiCoFe‐NC catalyst could keep 24 h. X‐ray photoelectron spectroscopy, electrochemically active surface area, and other physicochemical and electrochemical analyses reveal that its great OER catalytic activity is ascribed to the Ni‐Co hydroxides with modular 2‐Dimensional layered structure, the synergistic interactions among the Fe(III) species and Ni, Co metal centers, and the improved hydrophily endowed by the incorporation of N‐doped carbon hydrogel. This work might provide a useful and general strategy to design and synthesize high‐performance metal (hydr)oxides OER electrocatalysts.  相似文献   

14.
Developing efficient and stable non‐noble electrocatalysts for the oxygen evolution reaction (OER) remains challenging for practical applications. While nickel–iron layered double hydroxides (NiFe‐LDH) are emerging as prominent candidates with promising OER activity, their catalytic performance is still restricted by the limited active sites, poor conductivity and durability. Herein, hierarchical nickel–iron–cobalt LDH nanosheets/carbon fibers (NiFeCo‐LDH/CF) are synthesized through solvent‐thermal treatment of ZIF‐67/CF. Extended X‐ray adsorption fine structure analyses reveal that the Co substitution can stabilize the Fe local coordination environment and facilitate the π‐symmetry bonding orbital in NiFeCo‐LDH/CF, thus modifying the electronic structures. Coupling with the structural advantages, including the largely exposed active surface sites and facilitated charge transfer pathway ensured by CF, the resultant NiFeCo‐LDH/CF exhibits excellent OER activity with an overpotential of 249 mV at 10 mA cm?1 as well as robust stability over 20 h.  相似文献   

15.
A transition‐metal–nitrogen/carbon (TM–N/C, TM = Fe, Co, Ni, etc.) system is a popular, nonprecious‐metal oxygen reduction reaction (ORR) electrocatalyst for fuel cell and metal–air battery applications. However, there remains a lack of comprehensive understanding about the ORR electrocatalytic mechanism on these catalysts, especially the roles of different forms of metal species on electrocatalytic performance. Here, a novel Cu? N/C ORR electrocatalyst with a hybrid Cu coordination site is successfully fabricated with a simple but efficient metal–organic‐framework‐based, metal‐doping‐induced synthesis strategy. By directly pyrolyzing Cu‐doped zeolitic‐imidazolate‐framework‐8 polyhedrons, the obtained Cu? N/C catalyst can achieve a high specific surface area of 1182 m2 g?1 with a refined hierarchical porous structure and a high surface N content of 11.05 at%. Moreover, regulating the Cu loading can efficiently tune the states of Cu(II) and Cu0, resulting in the successful construction of a highly active hybrid coordination site of N? Cu(II)? Cu0 in derived Cu? N/C catalysts. As a result, the optimized 25% Cu? N/C catalyst possesses a high ORR activity and stability in 0.1 m KOH solution, as well as excellent performance and stability in a Zn–air battery.  相似文献   

16.
A novel polymer encapsulation strategy to synthesize metal isolated‐single‐atomic‐site (ISAS) catalysts supported by porous nitrogen‐doped carbon nanospheres is reported. First, metal precursors are encapsulated in situ by polymers through polymerization; then, metal ISASs are created within the polymer‐derived p‐CN nanospheres by controlled pyrolysis at high temperature (200–900 °C). Transmission electron microscopy and N2 sorption results reveal this material to exhibit a nanospheric morphology, a high surface area (≈380 m2 g?1), and a porous structure (with micropores and mesopores). Characterization by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure confirms the metal to be present as metal ISASs. This methodology is applicable to both noble and nonprecious metals (M‐ISAS/p‐CN, M = Co, Ni, Cu, Mn, Pd, etc.). In particular, the Co‐ISAS/p‐CN nanospheres obtained using this method show comparable (E1/2 = 0.838 V) electrochemical oxygen reduction activity to commercial Pt/C with 20 wt% Pt loading (E1/2 = 0.834 V) in alkaline media, superior methanol tolerance, and outstanding stability, even after 5000 cycles.  相似文献   

17.
Transition metal (TM)‐based carbon hybrids have numerous applications in the field of regenerative electrochemical energy. The synergetic effects of high conductivity of carbon supports and abundant catalytic active sites in TMs make these hybrids promising oxygen evolution reaction (OER) electrocatalysts. However, strategies for modulating the catalytic active species in the above hybrids are limited despite being highly sought after. Furthermore, the exact roles of chemical species in the hybrids (e.g., N, C, or TM) mainly responsible for this high OER performance remain unknown. Herein, an innovative approach based on atomic layer deposition is developed to tune the true active species in Co nanoparticle/N‐doped carbon nanotube (Co/N‐CNT) hybrids. Specifically, the configuration predominantly promoting water oxidation in an alkaline medium is identified as pyridinic N–Co–C. Furthermore, a physicochemical intact interface between metallic Co nanoparticles and conductive N‐CNTs is demonstrated to induce synergetic effects for accelerating charge transfer and enhancing electrocatalytic activity as well as stability in the hybrid catalysts. The optimized hybrid catalyst is revealed to exhibit outstanding alkaline OER activity and stability, outperforming RuO2, a benchmark novel OER electrocatalyst.  相似文献   

18.
Efficient, low‐cost catalysts are desirable for the sluggish oxygen reduction reaction (ORR). Herein, UIO‐66‐NH2‐derived multi‐element (Fe, S, N) co‐doped porous carbon catalyst is reported, Fe/N/S‐PC, with an octahedral morphology, a well‐defined mesoporous structure, and highly dispersed doping elements, synthesized by a double‐solvent diffusion‐pyrolysis method (DSDPM). The morphology of the UIO‐66‐NH2 precursor is perfectly inherited by the derived carbon material, resulting in a high surface area, a well‐defined mesoporous structure, and atomic‐level dispersion of the doping elements. Fe/N/S‐PC demonstrates outstanding catalytic activity and durability for the ORR in both alkaline and acidic solutions. In 0.1 m KOH, its half‐potential reaches 0.87 V (vs reversible hydrogen electrode (RHE)), 30 mV more positive than that of a 20 wt% Pt/C catalyst. In 0.1 m HClO4, it reaches 0.785 V (vs RHE), only 65 mV less than that of Pt/C. The catalyst also exhibits excellent performance in acidic hydrogen/oxygen proton exchange membrane fuel cells. A membrane electrode assembly (MEA) with the catalyst as the cathode reaches 700 mA·cm‐2 at 0.6 V and a maximum power density of 553 mW·cm‐2, ranking it among the best MEAs with a nonprecious metal catalyst as the cathode.  相似文献   

19.
The development of high‐performance but low‐cost catalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of central importance for realizing the prevailing application of metal–air batteries. Herein a facile route is devised to synthesize S, N codoped carbon cubes embedding Co–Fe carbides by pyrolyzing the Co–Fe Prussian blue analogues (PBA) coated with methionine. Via the strong metal–sulfur interaction, the methionine coating provides a robust sheath to restrain the cubic morphology of PBA upon pyrolysis, which is proved highly beneficial for promoting the specific surface area and active sites exposure, leading to remarkable bifunctionality of ORR and OER comparable to the benchmarks of Pt/C and RuO2. Further elaborative investigations on the activity origin and postelectrolytic composition unravel that for ORR the high activity is mainly contributed by the S, N codoped carbon shell with the inactive carbide phase converting into carbonate hydroxides. For OER, the embedded Co–Fe carbides transform in situ into layered (hydr)oxides, serving as the actual active sites for promoting water oxidation. Zn–air batteries employing the developed hollow structure as the air cathode catalyst demonstrate superb rechargeability, energy efficiency, as well as portability.  相似文献   

20.
Rational design of cost‐effective, nonprecious metal‐based catalysts with desirable oxygen reduction reaction (ORR) performance is extremely important for future fuel cell commercialization, etc. Herein, a new type of ORR catalyst of Co‐N‐doped mesoporous carbon hollow sphere (Co‐N‐mC) was developed by pyrolysis from elaborately fabricated polystyrene@polydopamine‐Co precursors. The obtained catalysts with active Co sites distributed in highly graphitized mesoporous N‐doped carbon hollow spheres exhibited outstanding ORR activity with an onset potential of 0.940 V, a half‐wave potential of 0.851 V, and a small Tafel slope of 45 mV decade?1 in 0.1 m KOH solution, which was comparable to that of the Pt/C catalyst (20%, Alfa). More importantly, they showed superior durability with little current decline (less than 4%) in the chronoamperometric evaluation over 60 000 s. These features make the Co‐N‐mC one of the best nonprecious‐metal catalysts to date for ORR in alkaline condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号