首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While lipoplex (cationic lipid‐nucleic acid complex)‐mediated intracellular delivery is widely adopted in mammalian cell transfection, its transfection efficiency for suspension cells, e.g., lymphatic and hematopoietic cells, is reported at only ≈5% or even lower. Here, efficient and consistent lipoplex‐mediated transfection is demonstrated for hard‐to‐transfect suspension cells via a single‐cell, droplet‐microfluidics approach. In these microdroplets, monodisperse lipoplexes for effective gene delivery are generated via chaotic mixing induced by the serpentine microchannel and co‐confined with single cells. Moreover, the cell membrane permeability increases due to the shear stress exerted on the single cells when they pass through the droplet pinch‐off junction. The transfection efficiency, examined by the delivery of the pcDNA3‐EGFP plasmid, improves from ≈5% to ≈50% for all three tested suspension cell lines, i.e., K562, THP‐1, Jurkat, and with significantly reduced cell‐to‐cell variation, compared to the bulk method. Efficient targeted knockout of the TP53BP1 gene for K562 cells via the CRISPR (clustered regularly interspaced short palindromic repeats)–CAS9 (CRISPR‐associated nuclease 9) mechanism is also achieved using this platform. Lipoplex‐mediated single‐cell transfection via droplet microfluidics is expected to have broad applications in gene therapy and regenerative medicine by providing high transfection efficiency and low cell‐to‐cell variation for hard‐to‐transfect suspension cells.  相似文献   

2.
A micro/nano‐fabrication process of a nanochannel electroporation (NEP) array and its application for precise delivery of plasmid for non‐viral gene transfection is described. A dip‐combing device is optimized to produce DNA nanowires across a microridge array patterned on the polydimethylsiloxane (PDMS) surface with a yield up to 95%. Molecular imprinting based on a low viscosity resin, 1,4‐butanediol diacrylate (1,4‐BDDA), adopted to convert the microridge‐nanowire‐microridge array into a microchannel‐nanochannel‐microchannel (MNM) array. Secondary machining by femtosecond laser ablation is applied to shorten one side of microchannels from 3000 to 50 μm to facilitate cell loading and unloading. The biochip is then sealed in a packaging case with reservoirs and microfluidic channels to enable cell and plasmid loading, and to protect the biochip from leakage and contamination. The package case can be opened for cell unloading after NEP to allow for the follow‐up cell culture and analysis. These NEP cases can be placed in a spinning disc and up to ten discs can be piled together for spinning. The resulting centrifugal force can simultaneously manipulate hundreds or thousands of cells into microchannels of NEP arrays within 3 minutes. To demonstrate its application, a 13 kbp OSKM plasmid of induced pluripotent stem cell (iPSC) is injected into mouse embryonic fibroblasts cells (MEFCs). Fluorescence detection of transfected cells within the NEP biochips shows that the delivered dosage is high and much more uniform compared with similar gene transfection carried out by the conventional bulk electroporation (BEP) method.  相似文献   

3.
Efficient tumor targeting has been a great challenge in the clinic for a very long time. The traditional targeting methods based on enhanced permeability and retention (EPR) effects show only an ≈5% targeting rate. To solve this problem, a new graphene‐based tumor cell nuclear targeting fluorescent nanoprobe (GTTN), with a new tumor‐targeting mechanism, is developed. GTTN is a graphene‐like single‐crystalline structure amphiphilic fluorescent probe with a periphery that is functionalized by sulfonic and hydroxyl groups. This probe has the characteristic of specific tumor cell targeting, as it can directly cross the cell membrane and specifically target to the tumor cell nucleus by the changed permeability of the tumor cell membranes in the tumor tissue. This new targeting mechanism is named the cell membrane permeability targeting (CMPT) mechanism, which is very different from the EPR effect. These probes can recognize tumor tissue at a very early stage and track the invasion and metastasis of tumor cells at the single cell level. The tumor‐targeting rate is improved from less than 5% to more than 50%. This achievement in efficient and accurate tumor cell targeting will speed up the arrival of a new era of tumor diagnosis and treatment.  相似文献   

4.
New techniques for single‐cell analysis enable new discoveries in gene expression and systems biology. Time‐dependent measurements on individual cells are necessary, yet the common single‐cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track an individual cell over time. Here a method for detecting mRNA expression in live single cells using molecular beacons that are transfected into single cells by means of nanofountain probe electroporation (NFP‐E) is presented. Molecular beacons are oligonucleotides that emit fluorescence upon binding to an mRNA target, rendering them useful for spatial and temporal studies of live cells. The NFP‐E is used to transfect a DNA‐based beacon that detects glyceraldehyde 3‐phosphate dehydrogenase and an RNA‐based beacon that detects a sequence cloned in the green fluorescence protein mRNA. It is shown that imaging analysis of transfection and mRNA detection can be performed within seconds after electroporation and without disturbing adhered cells. In addition, it is shown that time‐dependent detection of mRNA expression is feasible by transfecting the same single cell at different time points. This technique will be particularly useful for studies of cell differentiation, where several measurements of mRNA expression are required over time.  相似文献   

5.
Generating a stable knockout cell line is a complex process that can take several months to complete. In this work, a microfluidic method that is capable of isolating single cells in droplets, selecting successful edited clones, and expansion of these isoclones is introduced. Using a hybrid microfluidics method, droplets in channels can be individually addressed using a co‐planar electrode system. In the hybrid microfluidics device, it is shown that single cells can be trapped and subsequently encapsulate them on demand into pL‐sized droplets. Furthermore, droplets containing single cells are either released, kept in the traps, or merged with other droplets by the application of an electric potential to the electrodes that is actuated through an in‐house user interface. This high precision control is used to successfully sort and recover single isoclones to establish monoclonal cell lines, which is demonstrated with a heterozygous NCI‐H1299 lung squamous cell population resulting from loss‐of‐function eGFP and RAF1 gene knockout transfections.  相似文献   

6.
人类骨桥蛋白(hOPN)在细胞增殖中的功能研究   总被引:14,自引:0,他引:14  
为了研究人类骨桥蛋白(hOPN)与293细胞增殖。细胞周期及与细胞周期有关基因表达的关系。并对其机制进行探讨。成功地构建了hOPN真核表达载体并获得了稳定表达hOPN的细胞系,也同时获得了稳定表达EGFP的细胞系,hOPN对293细胞具有促增殖效应,hOPN蛋白激活了293细胞细胞周期蛋白A的表达。实验结果表明:hOPN通过一定的信号通路刺激了细胞周期蛋白A的表达。加快了细胞进入通过S期,从而促进了细胞的增殖。  相似文献   

7.
Molecular imaging significantly transforms the field of biomedical science and facilitates the visualization, characterization, and quantification of biologic processes. However, it is still challenging to monitor cell localization in vivo, which is essential to the study of tumor metastasis and in the development of cell‐based therapies. While most conventional small‐molecule fluorescent probes cannot afford durable cell labeling, transfection of cells with fluorescent proteins is limited by their fixed fluorescence, poor tissue penetration, and interference of autofluorescence background. Here, a bioresponsive near‐infrared fluorescent probe is reported as facile and reliable tool for real‐time cell tracking in vivo. The design of this probe relies on a new phenomenon observed upon fluorobenzene‐conjugated fluorescent dyes, which can form complexes with cytosolic glutathione and actively translocates to lysosomes, exhibiting enhanced and stable cell labeling. Fluorobenzene‐coupled hemicyanine, a near‐infrared fluorophore manifests to efficiently staining tumor cells without affecting their invasive property and enables persistent monitoring of cell migration in metastatic tumor murine models at high resolution for one week. The method of fluorobenzene functionalization also provides a simple and universal “add‐on” strategy to render ordinary fluorescent probes suitable for long‐term live‐cell tracking, for which currently there is a deficit of suitable molecular tools.  相似文献   

8.
Cells transport mass dynamically, crossing cell membranes to maintain metabolism and systemic homeostasis, through which biomolecules are also delivered to cells for gene editing, cell reprograming, therapy, and other purposes. Quantifying the translocation kinetics is fundamentally and clinically essential, but remains limited by fluorescence‐based technologies, which are semi‐quantitative and only provide kinetics information at cellular level or in discrete time. Herein, a real‐time method of quantifying cell internalization kinetics is reported using functionalized firefly‐luciferase nanocapsules as the probe. This quantitative assay will facilitate the rational design of delivery vectors and enable high‐throughput screening of peptides and other functional molecules, constituting an effective tool for broad applications, including drug development and cancer therapy.  相似文献   

9.
Stem cells are poorly permissive to non‐viral gene transfection reagents. In this study, we explored the possibility of improving gene delivery into human embryonic (hESC) and mesenchymal (hMSC) stem cells by synergizing the activity of a cell‐binding ligand with a polymer that releases nucleic acids in a cytoplasm‐responsive manner. A 29 amino acid long peptide, RVG, targeting the nicotinic acetylcholine receptor (nAchR) was identified to bind both hMSC and H9‐derived hESC. Conjugating RVG to a redox‐sensitive biodegradable dendrimer‐type arginine‐grafted polymer (PAM‐ABP) enabled nanoparticle formation with plasmid DNA without altering the environment‐sensitive DNA release property and favorable toxicity profile of the parent polymer. Importantly, RVG‐PAM‐ABP quantitatively enhanced transfection into both hMSC and hESC compared to commercial transfection reagents like Lipofectamine 2000 and Fugene. ~60% and 50% of hMSC and hESC were respectively transfected, and at increased levels on a per cell basis, without affecting pluripotency marker expression. RVG‐PAM‐ABP is thus a novel bioreducible, biocompatible, non‐toxic, synthetic gene delivery system for nAchR‐expressing stem cells. Our data also demonstrates that a cell‐binding ligand like RVG can cooperate with a gene delivery system like PAM‐ABP to enable transfection of poorly‐permissive cells.  相似文献   

10.
Noninvasive methods for in situ electrical stimulation of human cells open new frontiers to future bioelectronic therapies, where controlled electrical impulses could replace the use of chemical drugs for disease treatment. Here, this study demonstrates that the interaction of living cells with piezoelectric nanogenerators (NGs) induces a local electric field that self‐stimulates and modulates their cell activity, without applying an additional chemical or physical external stimulation. When cells are cultured on top of the NGs, based on 2D ZnO nanosheets, the electromechanical NG–cell interactions stimulate the motility of macrophages and trigger the opening of ion channels present in the plasma membrane of osteoblast‐like cells (Saos‐2) inducing intracellular calcium transients. In addition, excellent cell viability, proliferation, and differentiation are validated. This in situ cell‐scale electrical stimulation of osteoblast‐like cells can be extrapolated to other excitable cells such as neurons or muscle cells, paving the way for future bioelectronic medicines based on cell‐targeted electrical impulses.  相似文献   

11.
The profiling of allergic responses is a powerful tool in biomedical research and in judging therapeutic outcome in patients suffering from allergy. Novel insights into the signaling cascades and easier readouts can be achieved by shifting activation studies of bulk immune cells to the single cell level on patterned surfaces. The functionality of dinitrophenol (DNP) as a hapten in the induction of allergic reactions has allowed the activation process of single mast cells seeded on patterned surfaces to be studied following treatment with allergen specific Immunoglobulin E antibodies. Here, a click‐chemistry approach is applied in combination with polymer pen lithography (PPL) to pattern DNP‐azide on alkyne‐terminated surfaces to generate arrays of allergen. The large area functionalization offered by PPL allows an easy incorporation of such arrays into microfluidic chips. In such a setup, easy handling of cell suspension, incubation process, and read‐out by fluorescence microscopy will allow immune cell activation screening to be easily adapted for diagnostics and biomedical research.  相似文献   

12.
研究反义IGF-Ⅱ基因对胃癌细胞恶性表型的影响。将已构建的反义IGF-Ⅱ基因真核表达载体pIGF-ⅡAs导入人胃癌细胞BGC-823经G418抗性筛选,获得转基因细胞株克隆,测定细胞生长曲线,扫描电镜观察细胞表面结构,观察软琼脂细胞集落形成能力。结果转染反义IGF-Ⅱ基因细胞生长受抑制,细胞软琼脂集落形成能力下降。扫描电镜显示:转染反义基因细胞表面微绒毛减少。转染IGF-Ⅱ反义基因抑制胃癌细胞恶性表型.转染反义IGF-Ⅱ基因可能成为潜在的胃癌治疗手段。  相似文献   

13.
Cells directly probe and respond to the physicomechanical properties of their extracellular environment, a dynamic process which has been shown to play a key role in regulating both cellular adhesive processes and differential cellular function. Recent studies indicate that stem cells show lineage‐specific differentiation when cultured on substrates approximating the stiffness profiles of specific tissues. Although tissues are associated with a range of Young's modulus values for bulk rigidity, at the subcellular level, tissues are comprised of heterogeneous distributions of rigidity. Lithographic processes have been widely explored in cell biology for the generation of analytical substrates to probe cellular physicomechanical responses. In this work, it is shown for the first time that that direct‐write e‐beam exposure can significantly alter the rigidity of elastomeric poly(dimethylsiloxane) substrates and a new class of 2D elastomeric substrates with controlled patterned rigidity ranging from the micrometer to the nanoscale is described. The mechanoresponse of human mesenchymal stem cells to e‐beam patterned substrates was subsequently probed in vitro and significant modulation of focal adhesion formation and osteochondral lineage commitment was observed as a function of both feature diameter and rigidity, establishing the groundwork for a new generation of biomimetic material interfaces.  相似文献   

14.
15.
Cell separation is a key step in many biomedical research areas including biotechnology, cancer research, regenerative medicine, and drug discovery. While conventional cell sorting approaches have led to high‐efficiency sorting by exploiting the cell's specific properties, microfluidics has shown great promise in cell separation by exploiting different physical principles and using different properties of the cells. In particular, label‐free cell separation techniques are highly recommended to minimize cell damage and avoid costly and labor‐intensive steps of labeling molecular signatures of cells. In general, microfluidic‐based cell sorting approaches can separate cells using “intrinsic” (e.g., fluid dynamic forces) versus “extrinsic” external forces (e.g., magnetic, electric field, etc.) and by using different properties of cells including size, density, deformability, shape, as well as electrical, magnetic, and compressibility/acoustic properties to select target cells from a heterogeneous cell population. In this work, principles and applications of the most commonly used label‐free microfluidic‐based cell separation methods are described. In particular, applications of microfluidic methods for the separation of circulating tumor cells, blood cells, immune cells, stem cells, and other biological cells are summarized. Computational approaches complementing such microfluidic methods are also explained. Finally, challenges and perspectives to further develop microfluidic‐based cell separation methods are discussed.  相似文献   

16.
The fabrication of DNA polymer brushes with spatial resolution onto a solid surface is a crucial step for biochip research and related applications, cell‐free gene expression study, and even artificial cell fabrication. Here, for the first time, a DNA polymer brush patterning method is reported based on the photoactivation of an ortho‐nitrobenzyl linker‐embedded DNA hairpin structure and a subsequent surface‐initiated DNA hybridization chain reaction (HCR). Inert DNA hairpins are exposed to ultraviolet light irradiation to generate DNA duplexes with two active sticky ends (toeholds) in a programmable manner. These activated DNA duplexes can initiate DNA HCR to generate multifunctional patterned DNA polymer brushes with complex geometrical shapes. Different multifunctional DNA polymer brush patterns can be fabricated on certain areas of the same solid surface using this method. Moreover, the patterned DNA brush surface can be used to capture target molecules in a desired manner.  相似文献   

17.
Electrohydrodynamic printing has gained increasing attentions to fabricate micro/nanoscale patterns in a controlled and cost-effective manner. However, most of the existing studies focus on printing tiny dried fibres, which limits its applications in high-resolution cell printing. Here we investigated the feasibility of using electrohydrodynamic printing to pattern microscale liquid filaments. Process parameters like stage moving speed and substrate resistance were optimised to stably print polyvinyl alcohol (PVA) liquid lines with the smallest line width of 37.4?μm. Complex patterns like XJTU logo with constant or variable line width were successfully printed by dynamically adjusting the moving speed. Fluorescent microparticles, with a similar diameter to living cells, were patterned in a one-by-one manner along with the PVA filaments. It is envisioned that the presented electrohydrodynamic printing method could be potentially used to high-resolution hydrogel/cell patterning for the studies of microscale cell–cell interactions or organ printing.  相似文献   

18.
Targeted delivery of nanoparticle (NP)‐based diagnostic and therapeutic agents to malignant cells and tissues has exclusively relied on chemotargeting, wherein NPs are surface‐coated with ligands that specifically bind to overexpressed receptors on malignant cells. Here, it is demonstrated that cellular uptake of NPs can also be biased to malignant cells based on the differential mechanical states of cells, enabling mechanotargeting. Owing to mechanotransduction, cell lines (HeLa and HCT‐8) cultured on hydrogels of various stiffness are directed into different stress states, measured by cellular force microscopies. In vitro NP delivery reveals that increases in cell stress suppress cellular uptake, counteracting the enhanced uptake that occurs with increases in exposed surface area of spread cells. Upon prolonged culture on stiff hydrogels, cohesive HCT‐8 cell colonies undergo metastatic phenotypic change and disperse into individual malignant cells. The metastatic cells are of extremely low stress state and adopt an unspread, 3D morphology, resulting in several‐fold higher uptake than the nonmetastatic counterparts. This study opens a new paradigm of harnessing mechanics for the design of future strategies in nanomedicine.  相似文献   

19.
Multidrug resistance (MDR) remains one of the biggest obstacles in chemotherapy of tumor mainly due to P‐glycoprotein (P‐gp)‐mediated drug efflux. Here, a transformable chimeric peptide is designed to target and self‐assemble on cell membrane for encapsulating cells and overcoming tumor MDR. This chimeric peptide (C16‐K(TPE)‐GGGH‐GFLGK‐PEG8, denoted as CTGP) with cathepsin B‐responsive and cell membrane‐targeting abilities can self‐assemble into nanomicelles and further encapsulate the therapeutic agent doxorubicin (termed as CTGP@DOX). After the cleavage of the Gly‐Phe‐Leu‐Gly (GFLG) sequence by pericellular overexpressed cathepsin B, CTGP@DOX is dissociated and transformed from spherical nanoparticles to nanofibers due to the hydrophilic–hydrophobic conversion and hydrogen bonding interactions. Thus obtained nanofibers with cell membrane‐targeting 16‐carbon alkyl chains can adhere firmly to the cell membrane for cell encapsulation and restricting DOX efflux. In comparison to free DOX, 45‐time higher drug retention and 49‐fold greater anti‐MDR ability of CTGP@DOX to drug‐resistant MCF‐7R cells are achieved. This novel strategy to encapsulate cells and reverse tumor MDR via morphology transformation would open a new avenue towards chemotherapy of tumor.  相似文献   

20.
Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography‐based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three‐step process, a 3D cancer model that mimics cell–cell and cell–extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ‐on‐a‐chip and other biological experimental platforms amenable to long‐term observation of dynamic events using advanced imaging and analytical techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号