首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Self‐assembly of gold nanoparticles demonstrates a promising approach to realize enhanced photoacoustic imaging (PAI) and photothermal therapy (PTT) for accurate diagnosis and efficient cancer therapy. Herein, unique photothermal assemblies with tunable patterns of gold nanoparticles (including arcs, rings, ribbons, and vesicles) on poly(lactic‐co‐glycolic acid) (PLGA) spheres are constructed taking advantage of emulsion‐confined and polymer‐directed self‐assembly strategies. The influencing factors and formation mechanism to produce the assemblies are investigated in details. Both the emulsion structure and migration behaviors of amphiphilic block copolymer tethered gold nanoparticles are found to contribute to the formation of versatile photothermal assemblies. Hyaluronic acid‐modified R‐PLGA‐Au (RPA) exhibits outstanding photothermal performances under NIR laser irradiation, which is induced by strong plasmonic coupling between adjacent gold nanoparticles. It is interesting that secondary assembly of RPA can be triggered by NIR laser irradiation. Prolonged residence time in tumors is achieved after RPA assemblies are fused into superstructures with larger sizes, realizing real‐time monitoring of the therapeutic processes via PAI with enhanced photoacoustic signals. Notably, synergistic effect resulting from PTT‐enhanced chemotherapy is realized to demonstrate high antitumor performance. This work provides a facile strategy to construct flexible photothermal assemblies with favorable properties for imaging‐guided synergistic therapy.  相似文献   

3.
Conjugated polymers with strong absorbance in the near‐infrared (NIR) region have been widely explored as photothermal therapy agents due to their excellent photostability and high photothermal conversion efficiency. Herein, polypyrrole (PPy) nanoparticles are fabricated by using bovine serum albumin (BSA) as the stabilizing agent, which if preconjugated with photosensitizer chlorin e6 (Ce6) could offer additional functionalities in both imaging and therapy. The obtained PPy@BSA‐Ce6 nanoparticles exhibit little dark toxicity to cells, and are able to trigger both photodynamic therapy (PDT) and photothermal therapy (PTT). As a fluorescent molecule that in the meantime could form chelate complex with Gd3+, Ce6 in PPy@BSA‐Ce6 nanoparticles after being labeled with Gd3+ enables dual‐modal fluorescence and magnetic resonance (MR) imaging, which illustrate strong tumor uptake of those nanoparticles after intravenous injection into tumor‐bearing mice. In vivo combined PDT and PTT treatment is then carried out after systemic administration of PPy@BSA‐Ce6, achieving a remarkably improved synergistic therapeutic effect compared to PDT or PTT alone. Hence, a rather simple one‐step approach to fabricate multifunctional nanoparticles based on conjugated polymers, which appear to be promising in cancer imaging and combination therapy, is presented.  相似文献   

4.
Photoacoustic imaging‐guided photothermal therapy in the second near‐infrared (NIR‐II) window shows promise for clinical deep‐penetrating tumor phototheranostics. However, ideal photothermal agents in the NIR‐II window are still rare. Here, the emeraldine salt of polyaniline (PANI‐ES), especially synthesized by a one‐pot enzymatic reaction on sodium bis(2‐ethylhexyl) sulfosuccinate (AOT) vesicle surface (PANI‐ES@AOT, λmax ≈ 1000 nm), exhibits excellent dispersion in physiological environment and remarkable photothermal ability at pH 6.5 (photothermal conversion efficiency of 43.9%). As a consequence of the enhanced permeability and retention effect of tumors and the doping‐induced photothermal effect of PANI‐ES@AOT, this pH‐sensitive NIR‐II photothermal agent allows tumor acidity phototheranostics with minimized pseudosignal readout and subdued normal tissue damage. Moreover, the enhanced fluidity of vesicle membrane triggered by heating is beneficial for drug release and allows precise synergistic therapy for an improved therapeutic effect. This study highlights the potential of template‐oriented (or interface‐confined) enzymatic polymerization reactions for the construction of conjugated polymers with desired biomedical applications.  相似文献   

5.
6.
7.
基于纳米材料的化疗-光热协同治疗是一种高效的肿瘤治疗方式, 但如何构建具有高载药量与良好光热转换性能的纳米药物依然面临挑战。本研究通过超声剥离法制备二维硼(boron, B)纳米片, 进一步在其表面原位负载超小粒径硫化铜(CuS)纳米颗粒和化疗药阿霉素(DOX), 形成B-CuS-DOX纳米药物。B-CuS具有高的DOX药物装载能力(864 mg/g)和优异的光热转化性能(在808 nm处的光热转换效率为55.8%), 同时可实现pH及近红外激光双重刺激响应而释放药物。细胞实验表明在808 nm近红外光的照射下, B-CuS-DOX展示了良好的化疗-光热协同治疗效果。本研究构建的纳米药物有望为体内肿瘤治疗提供一种有效的化疗-光热协同治疗策略。  相似文献   

8.
Recently, the development of nano‐theranostic agents aiming at imaging guided therapy has received great attention. In this work, a near‐infrared (NIR) heptamethine indocyanine dye, IR825, in the presence of cationic polymer, polyallylamine hydrochloride (PAH), forms J‐aggregates with red‐shifted and significantly enhanced absorbance. After further complexing with ultra‐small iron oxide nanoparticles (IONPs) and the followed functionalization with polyethylene glycol (PEG), the obtained IR825@PAH‐IONP‐PEG composite nanoparticles are highly stable in different physiological media. With a sharp absorbance peak, IR825@PAH‐IONP‐PEG can serve as an effective photothermal agent under laser irradiation at 915 nm, which appears to be optimal in photothermal therapy application considering its improved tissue penetration compared with 808‐nm light and much lower water heating in comparison to 980‐nm light. As revealed by magnetic resonance (MR) imaging, those nanoparticles after intravenous injection exhibit high tumor accumulation, which is then harnessed for in vivo photothermal ablation of tumors, achieving excellent therapeutic efficacy in a mouse tumor model. This study demonstrates for the first time that J‐aggregates of organic dye molecules are an interesting class of photothermal material, which when combined with other imageable nanoprobes could serve as a theranostic agent for imaging‐guided photothermal therapy of cancer.  相似文献   

9.
10.
Surface-enhanced Raman scattering (SERS) imaging has emerged as a promising tool for guided cancer diagnosis and synergistic therapies, such as combined chemotherapy and photothermal therapy (chemo-PTT). Yet, existing therapeutic agents often suffer from low SERS sensitivity, insufficient photothermal conversion, or/and limited drug loading capacity. Herein, a multifunctional theragnostic nanoplatform consisting of mesoporous silica-coated gold nanostar with a cyclic Arg-Gly-Asp (RGD)-coated gold nanocluster shell (named RGD–pAS@AuNC) is reported that exhibits multiple “hot spots” for pronouncedly enhanced SERS signals and improved near-infrared (NIR)-induced photothermal conversion efficiency (85.5%), with a large capacity for high doxorubicin (DOX) loading efficiency (34.1%, named RGD/DOX–pAS@AuNC) and effective NIR-triggered DOX release. This nanoplatform shows excellent performance in xenograft tumor model of HeLa cell targeting, negligible cytotoxicity, and good stability both in vitro and in vivo. By SERS imaging, the optimal temporal distribution of injected RGD/DOX–pAS@AuNCs at the tumor site is identified for NIR-triggered local chemo-PTT toward the tumor, achieving ultraeffective therapy in tumor cells and tumor-bearing mouse model with 5 min of NIR irradiation (0.5 W cm−2). This work offers a promising approach to employing SERS imaging for effective noninvasive tumor treatment by on-site triggered chemo-PTT.  相似文献   

11.
Monodisperse, ultrasmall (<5 nm) Cu2?xS nanodots (u‐Cu2?xS NDs) with significantly strong near‐infrared absorption and conversion are successfully demonstrated for effective deep‐tissue photoacoustic imaging‐guided photothermal therapy both in vitro and in vivo. Owing to ultrasmall nanoparticle size and high water dispersibility as well as long stability, such nanodots possess a prolonged circulation in blood and good passive accumulation within tumors through the enhanced permeability and retention effect. These u‐Cu2?xS NDs have negligible side effects to both blood and normal tissues according to in vivo toxicity evaluations for up to 3 months, showing excellent hemo/histocompatibility. Furthermore, these u‐Cu2?xS NDs can be thoroughly cleared through feces and urine within 5 days, showing high biosafety for further potential clinical translation. This novel photoacoustic imaging‐guided photothermal therapy based on u‐Cu2?xS NDs composed of a single component shows great prospects as a multifunctional nanoplatform with integration and multifunction for cancer diagnosis and therapy.  相似文献   

12.
13.
Responsive multifunctional organic/inorganic nanohybrids are promising for effective and precise imaging‐guided therapy of cancer. In this work, a near‐infrared (NIR)‐triggered multifunctional nanoplatform comprising Au nanorods (Au NRs), mesoporous silica, quantum dots (QDs), and two‐armed ethanolamine‐modified poly(glycidyl methacrylate) with cyclodextrin cores (denoted as CD‐PGEA) has been successfully fabricated for multimodal imaging‐guided triple‐combination treatment of cancer. A hierarchical hetero‐structure is first constructed via integration of Au NRs with QDs through a mesoporous silica intermediate layer. The X‐ray opacity and photoacoustic (PA) property of Au NRs are utilized for tomography (CT) and PA imaging, and the imaging sensitivity is further enhanced by the fluorescent QDs. The mesoporous feature of silica allows the loading of a typical antitumor drug, doxorubicin (DOX), which are sealed by the polycationic gatekeepers, low toxic hydroxyl‐rich CD‐PGEA/pDNA complexes, realizing the co‐delivery of drug and gene. The photothermal effect of Au NRs is utilized for photothermal therapy (PTT). More interestingly, such photothermal effect also induces a cascade of NIR‐triggered release of DOX through the facilitated detachment of CD‐PGEA gatekeepers for controlled chemotherapy. The resultant chemotherapy and gene therapy for glioma tumors are complementary for the efficiency of PTT. This work presents a novel responsive multifunctional imaging‐guided therapy platform, which combines fluorescent/PA/CT imaging and gene/chemo/photothermal therapy into one nanostructure.  相似文献   

14.
Theranostic nanomedicines that integrate diagnostic and therapeutic moieties into a single nanoscale platform are playing an increasingly important role in fighting cancer. Here, a facile and green synthetic strategy for hollow CoPt alloy nanoparticles (HCPA‐NPs) using plant polyphenols as assisted agents is reported for the first time. This novel strategy enables size‐controlled synthesis of HCPA‐NPs through the control of the molecular sizes of polyphenols. It is also a versatile strategy for synthesizing other hollow alloy nanoparticles with various metal compositions due to the diverse metal‐chelating ability of the polyphenols. Further studies show that HCPA‐NPs have good biocompatibility and can be successfully implemented for magnetic resonance and photoacoustic dual‐modal imaging guided photothermal therapy. This work brings new insights for the green synthesis of hollow nanoparticles and extends these biocompatible nanoparticles for theranostic applications.  相似文献   

15.
Conjugated polymers have been increasingly studied for photothermal therapy (PTT) because of their merits including large absorption coefficient, facile tuning of exciton energy dissipation through nonradiative decay, and good therapeutic efficacy. The high photothermal conversion efficiency (PCE) is the key to realize efficient PTT. Herein, a donor–acceptor (D–A) structured porphyrin‐containing conjugated polymer (PorCP) is reported for efficient PTT in vitro and in vivo. The D–A structure introduces intramolecular charge transfer along the backbone, resulting in redshifted Q band, broadened absorption, and increased extinction coefficient as compared to the state‐of‐art porphyrin‐based photothermal reagent. Through nanoencapsulation, the dense packing of a large number of PorCP molecules in a single nanoparticle (NP) leads to favorable nonradiative decay, good photostability, and high extinction coefficient of 4.23 × 104m ?1 cm?1 at 800 nm based on porphyrin molar concentration and the highest PCE of 63.8% among conjugated polymer NPs. With the aid of coloaded fluorescent conjugated polymer, the cellular uptake and distribution of the PorCP in vitro can be clearly visualized, which also shows effective photothermal tumor ablation in vitro and in vivo. This research indicates a new design route of conjugated polymer‐based photothermal therapeutic materials for potential personalized theranostic nanomedicine.  相似文献   

16.
17.
18.
19.
Multimodal imaging guided synergistic therapy promises more accurate diagnosis than any single imaging modality, and higher therapeutic efficiency than any single one or their simple “mechanical” combination. Herein, we report a dual‐stimuli responsive nanotheranostic based on a hierarchical nanoplatform, composed of mesoporous silica‐coated gold nanorods (GNR@SiO2), Indocyanine Green (ICG), and 5‐fluorouracil (5‐FU), for in vivo multimodal imaging guided synergistic therapy. The 5‐FU loaded ICG‐conjugated silica‐coated gold nanorods (GNR@SiO2‐5‐FU‐ICG) was able to response specifically to the two stimuli of pH change and near‐infrared (NIR) light irradiation. Both the NIR light irradiation and acidic environment accelerated the 5‐FU release. Meanwhile, the heat generation and singlet oxygen production can be induced by GNR@SiO2‐5‐FU‐ICG upon light irradiation. Most intriguingly, the nanoplatform also promises multimodal imaging such as two‐photon luminescence, fluorescence, photoacoustic, photothermal imaging, as well as trimodal synergistic therapy such as photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy. The cancer theranostic capability of GNR@SiO2‐5‐FU‐ICG was evaluated both in vitro and in vivo. The trimodal synergistic therapy with the guidance of multimodal imaging exhibited remarkably enhanced treatment efficacy. This concept of a hierarchical nanoplatform integrates multiple diagnostic/therapeutic modalities into one platform, which can potentially be applied as personalized nanomedicine with drug delivery, diagnosis, and treatment.  相似文献   

20.
Controlled drug release systems can enhance the safety and availability but avoid the side effect of drugs. Herein, the concept of DNA complementary base pairing rules in biology is used to design and prepare a photothermal‐triggered drug release system. Adenine (A) modified polydopamine nanoparticles (A‐PDA, photothermal reagent) can effectively bind with thymine (T) modified Zinc phthalocyanine (T‐ZnPc, photosensitizer) forming A‐PDA = T‐ZnPc (PATP) complex based on A = T complementary base pairing rules. Similar to DNA, whose base pairing in double strands will break by heating, T‐ZnPc can be effectively released from A‐PDA after near infrared irradiation–triggered light‐thermal conversion to obtain satisfactory photodynamic–photothermal synergistic tumor treatment. In addition, PDA can carry abundant Gd3+ to provide magnetic resonance imaging guided delivery and theranostic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号