首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lithium‐ion capacitors (LICs) are promising electrical energy storage systems for mid‐to‐large‐scale applications due to the high energy and large power output without sacrificing long cycle stability. However, due to the different energy storage mechanisms between anode and cathode, the energy densities of LICs often degrade noticeably at high power density, because of the sluggish kinetics limitation at the battery‐type anode side. Herein, a high‐performance LIC by well‐defined ZnMn2O4‐graphene hybrid nanosheets anode and N‐doped carbon nanosheets cathode is presented. The 2D nanomaterials offer high specific surface areas in favor of a fast ion transport and storage with shortened ion diffusion length, enabling fast charge and discharge. The fabricated LIC delivers a high specific energy of 202.8 Wh kg?1 at specific power of 180 W kg?1, and the specific energy remains 98 Wh kg?1 even when the specific power achieves as high as 21 kW kg?1.  相似文献   

3.
Constructing unique mesoporous 2D Si nanostructures to shorten the lithium‐ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode–electrolyte interface offers exciting opportunities in future high‐performance lithium‐ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non‐van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m2 g?1) are successfully achieved by a scalable and cost‐efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g?1 at 4 A g?1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full‐cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next‐generation lithium‐ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices.  相似文献   

4.
Silicon holds great promise as an anode material for lithium‐ion batteries with higher energy density; its implication, however, is limited by rapid capacity fading. A catalytic growth of graphene cages on composite particles of magnesium oxide and silicon, which are made by magnesiothermic reduction reaction of silica particles, is reported herein. Catalyzed by the magnesium oxide, graphene cages can be conformally grown onto the composite particles, leading to the formation of hollow graphene‐encapsulated Si particles. Such materials exhibit excellent lithium storage properties in terms of high specific capacity, remarkable rate capability (890 mAh g?1 at 5 A g?1), and good cycling retention over 200 cycles with consistently high coulombic efficiency at a current density of 1 A g?1. A full battery test using LiCoO2 as the cathode demonstrates a high energy density of 329 Wh kg?1.  相似文献   

5.
6.
7.
Lithium‐ion batteries (LIBs) are promising energy storage devices for integrating renewable resources and high power applications, owing to their high energy density, light weight, high flexibility, slow self‐discharge rate, high rate charging capability, and long battery life. LIBs work efficiently at ambient temperatures, however, at high‐temperatures, they cause serious issues due to the thermal fluctuation inside batteries during operation. The separator is a key component of batteries and is crucial for the sustainability of LIBs at high‐temperatures. The high thermal stability with minimum thermal shrinkage and robust mechanical strength are the prime requirements along with high porosity, ionic conductivity, and electrolyte uptake for highly efficient high‐temperature LIBs. This Review deals with the recent studies and developments in separator technologies for high‐temperature LIBs with respect to their structural layered formation. The recent progress in monolayer and multilayer separators along with the developed preparation methodologies is discussed in detail. Future challenges and directions toward the advancement in separator technology are also discussed for achieving remarkable performance of separators in a high‐temperature environment.  相似文献   

8.
9.
The CuS(x wt%)@Cu‐BTC (BTC = 1,3,5‐benzenetricarboxylate; x = 3, 10, 33, 58, 70, 99.9) materials are synthesized by a facile sulfidation reaction. The composites are composed of octahedral Cu3(BTC)2·(H2O)3 (Cu‐BTC) with a large specific surface area and CuS with a high conductivity. The as‐prepared CuS@Cu‐BTC products are first applied as the anodes of lithium‐ion batteries (LIBs). The synergistic effect between Cu‐BTC and CuS components can not only accommodate the volume change and stress relaxation of electrodes but also facilitate the fast transport of Li ions. Thus, it can greatly suppress the transformation process from Li2S to polysulfides by improving the reversibility of the conversion reaction. Benefiting from the unique structural features, the optimal CuS(70 wt%)@Cu‐BTC sample exhibits a remarkably improved electrochemical performance, showing an over‐theoretical capacity up to 1609 mAh g?1 after 200 cycles (100 mA g?1) with an excellent rate‐capability of ≈490 mAh g?1 at 1000 mA g?1. The outstanding LIB properties indicate that the CuS(70 wt%)@Cu‐BTC sample is a highly desirable electrode material candidate for high‐performance LIBs.  相似文献   

10.
11.
Magnesium batteries have the potential to be a next generation battery with large capability and high safety, owing to the high abundance, great volumetric energy density, and reversible dendrite‐free capability of Mg anodes. However, the lack of a stable high‐voltage electrolyte, and the sluggish Mg‐ion diffusion in lattices and through interfaces limit the practical uses of Mg batteries. Herein, a spinel MgIn2S4 microflower‐like material assembled by 2D‐ultrathin (≈5.0 nm) nanosheets is reported and first used as a cathode material for high‐temperature Mg batteries with an ionic liquid electrolyte. The nonflammable ionic liquid electrolyte ensure the safety under high temperatures. As prepared MgIn2S4 exhibits wide‐temperature‐range adaptability (50–150 °C), ultrahigh capacity (≈500 mAh g?1 under 1.2 V vs Mg/Mg2+), fast Mg2+ diffusibility (≈2.0 × 10?8 cm2 s?1), and excellent cyclability (without capacity decay after 450 cycles). These excellent electrochemical properties are due to the fast kinetics of magnesium by the 2D nanosheets spinel structure and safe high‐temperature operation environment. From ex situ X‐ray diffraction and transmission electron microscopy measurements, a conversion reaction of the Mg2+ storage mechanism is found. The excellent performance and superior security make it promising in high‐temperature batteries for practical applications.  相似文献   

12.
2D transition‐metal carbides and nitrides, named MXenes, are promising materials for energy storage, but suffer from aggregation and restacking of the 2D nanosheets, which limits their electrochemical performance. In order to overcome this problem and realize the full potential of MXene nanosheets, a 3D MXene foam with developed porous structure is established via a simple sulfur‐template method, which is freestanding, flexible, and highly conductive, and can be directly used as the electrode in lithium‐ion batteries. The 3D porous architecture of the MXene foam offers massive active sites to enhance the lithium storage capacity. Moreover, its foam structure facilitates electrolyte infiltration for fast Li+ transfer. As a result, this flexible 3D porous MXene foam exhibits significantly enhanced capacity of 455.5 mAh g?1 at 50 mA g?1, excellent rate performance (101 mAh g?1 at 18 A g?1), and superior ultralong‐term cycle stability (220 mAh g?1 at 1 A g?1 after 3500 cycles). This work not only demonstrates the great superiority of the 3D porous MXene foam but also proposes the sulfur‐template method for controllable constructing of the 3D foam from 2D nanosheets at a relatively low temperature.  相似文献   

13.
14.
15.
16.
17.
Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. This Review describes some recent developments in the synthesis and characterization of nanostructured cathode materials, including lithium transition metal oxides, vanadium oxides, manganese oxides, lithium phosphates, and various nanostructured composites. The major goal of this Review is to highlight some new progress in using these nanostructured materials as cathodes to develop lithium batteries with high energy density, high rate capability, and excellent cycling stability resulting from their huge surface area, short distance for mass and charge transport, and freedom for volume change in nanostructured materials.  相似文献   

18.
19.
1T phase MoS2 possesses higher conductivity than the 2H phase, which is a key parameter of electrochemical performance for lithium ion batteries (LIBs). Herein, a 1T‐MoS2/C hybrid is successfully synthesized through facile hydrothermal method with a proper glucose additive. The synthesized hybrid material is composed of smaller and fewer‐layer 1T‐MoS2 nanosheets covered by thin carbon layers with an enlarged interlayer spacing of 0.94 nm. When it is used as an anode material for LIBs, the enlarged interlayer spacing facilitates rapid intercalating and deintercalating of lithium ions and accommodates volume change during cycling. The high intrinsic conductivity of 1T‐MoS2 also contributes to a faster transfer of lithium ions and electrons. Moreover, much smaller and fewer‐layer nanosheets can shorten the diffusion path of lithium ions and accelerate reaction kinetics, leading to an improved electrochemical performance. It delivers a high initial capacity of 920.6 mAh g?1 at 1 A g?1 and the capacity can maintain 870 mAh g?1 even after 300 cycles, showing a superior cycling stability. The electrode presents a high rate performance as well with a reversible capacity of 600 mAh g?1 at 10 A g?1. These results show that the 1T‐MoS2/C hybrid shows potential for use in high‐performance lithium‐ion batteries.  相似文献   

20.
Anodes involving conversion and alloying reaction mechanisms are attractive for potassium‐ion batteries (PIBs) due to their high theoretical capacities. However, serious volume change and metal aggregation upon potassiation/depotassiation usually cause poor electrochemical performance. Herein, few‐layered SnS2 nanosheets supported on reduced graphene oxide (SnS2@rGO) are fabricated and investigated as anode material for PIBs, showing high specific capacity (448 mAh g?1 at 0.05 A g?1), high rate capability (247 mAh g?1 at 1 A g?1), and improved cycle performance (73% capacity retention after 300 cycles). In this composite electrode, SnS2 nanosheets undergo sequential conversion (SnS2 to Sn) and alloying (Sn to K4Sn23, KSn) reactions during potassiation/depotassiation, giving rise to a high specific capacity. Meanwhile, the hybrid ultrathin nanosheets enable fast K storage kinetics and excellent structure integrity because of fast electron/ionic transportation, surface capacitive‐dominated charge storage mechanism, and effective accommodation for volume variation. This work demonstrates that K storage performance of alloy and conversion‐based anodes can be remarkably promoted by subtle structure engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号