首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatigue and Microstructure of Coronary Artery Stents During implantation the structure of coronary artery stents is subjected to distinct plastic deformation. Subsequently the implant has to sustain up to 700 million cycles induced by the cyclic diameter change of coronary arteries. Regions of high deformation show characteristic deformation structures like slip traces or extrusions and intrusions of grains on the surface without failure of the material. In order to gain information about the microstructural and microtextural evolution during deformation microstructure characterisation by means of scanning electron microscopy as well as transmission electron microscopy and single grain orientation determination were carried out. The analysis of cyclic deformation with different frequencies is of special interest. Several correlations between microstructure and deformation state are observed. Few deformation characteristics occur in the solution annealed stents and increase after dilation. Inhomogeneous deformation behaviour depending on the deformation of individual grains is observed. After cyclic deformation further changes in the microstructure can be observed. These changes caused by cyclic deformation are sensitive to load frequency and generate the formation of a completely different microstructure. Knowledge of microstructure evolution caused by distinct plastic deformation and fatigue in so called oligocrystalline structures is basis for ongoing development in stent optimization.  相似文献   

2.
In the 2001 completely revised version of DIN 1045‐1 for the first time an explicit proof against fatigue, more a fatigue analysis, have been published. A limit on the fatigue strength at two million cycles, as it was formerly common in civil engineering, is no longer in use. The influence of corrosion on the fatigue behaviour has been investigated insufficiently. It is thus not satisfyingly clarified. To fill this gap of knowledge, a research program was launched, in which fatigue tests at steel samples with a diameter of 16 mm were performed under going corrosion. The fatigue behaviour of the reinforcing steel was determined for four different corrosive media. The aim of the investiagtions was to show that the SN lines, which are the result of the fatigue tests, have exposure caused very different patterns. On the other hand it is examined, whether crack initiation and crack growth of the steel specimen can be recorded separately from each other. Therefore, different testing methods for crack detection were used. They differ especially with respect to their methodology. The article briefly describes the use of the testing methods for crack detection, explains the fatigue tests with the different corrosive liquids and discusses the test results.  相似文献   

3.
4.
5.
Fatigue of the Quenched and Hardened Steel 42CrMo4 under Multiaxial In- and Out-of-Phase Loading Two kinds of specimens out of the quenched and hardened steel 42CrMo4 (similar SAE 4140) were tested by combined tension-torsion in- and out-of-phase loading. The specimens batches differed in the residual stress state. Under cyclic, stress controlled loading an elastic behaviour is registrated until 50% of the life time. Then a rapid softening occurs, which correlates with the von-Mises equivalent stress in the case of in-phase loading. At high stress amplitudes, the residual stresses may be neglected. The lifetime is best described by the fatigue criterion of Zenner which considers the integral average of the stress state in every plane. This stress state is described by a linear combination of the shear stress amplitude and the normal stress amplitude. Below the cyclic yield strength, the residual stresses must be taken into account as static stresses. The comparison of the local residual stress distributions is possible by using the weakest link model of Heckel, which is described in detail.  相似文献   

6.
7.
Low Cycle Fatigue of Steel in Hydrogen Environment The low cycle fatigue fracture of a medium strength tempered steel ist studied in compressed hydrogen resp. nitrogen (150 bar). For given strain amplitudes, hydrogen reduced strongly the cycles to failure. Probably the crack growth is accelerated rather than the crack initiation. The frequency had no influence on the number of cycles to failure.  相似文献   

8.
Room Temperature Fatigue Behaviour of a Normalized Steel SAE 4140 in Torsion Cyclic deformation behaviour of a normalized steel SAE 4140 in shear strain-controlled torsion is characterized by cyclic softening and cyclic hardening. If mean shear stresses are superimposed to an alternating shear stress, cycle-dependent creep occurs, and the number of cycles to failure decreases. In shear strain-controlled torsional loading, mean stresses are observed to relax nearly to zero within a few cycles. Fatigue life is not influenced by mean shear strains.  相似文献   

9.
Biaxial fatigue of friction stir welded stiffened panels Within the framework of the European WelAir project, cruciform specimens made from stiffening FSW overlap joints were fatigued in the DLR biaxial test rig. To resemble the loading situation of pressurized fuselage structures, proportional loading without any phase shift, but with different load ratios λ between the loading components in both directions was applied.Natural crack initiation and subsequent crack growth were governed by the stiffness gradient caused by introducing the stringer. Cracks initiated and propagated at run‐in and run‐out locations in a direction perpendicular to the weld seam. The shortest fatigue life was observed for uniaxial loading in welding direction (λ = 0). An additional stress component perpendicular to the joint line (λ > 0) resulted in a higher number of cycles to failure. Similar to single stringer panels, increasing the load ratio also increased the number of cycles to failure for FSW clip‐stringer structural members, but additionally gives a different location of the fatal crack.  相似文献   

10.
Conjoint Action of Stress Corrosion Cracking and Fatigue on Corrosion Fatigue of a High Strength Steel The corrosion fatigue characteristics of a high strength, martensitic steel in 0.5 n NaCl solution is investigated with regard to the fatigue and stress corrosion cracking behaviour of the material. Test parameters are stress ratio and frequency, testing is carried out with fracture mechanics methods, the crack surfaces are examined fractographically. An analysis of the results reveals that corrosion fatigue in high strength steel is caused by fatigue or by stress corrosion cracking, depending on the kinetics of the two processes. Fatigue and stress corrosion cracking do not act cumulative or additive. Instead, the kinetically faster process causes crack advance. The crack growth characteristics are interpreted with respect to the fractographic appearance of the crack surfaces. Corrosion fatigue cracks propagate either intergranular relative to the prior austenite grain boundaries as stress corrosion cracks do or transgranular like fatigue cracks, depending on the crack growth rates of the two processes. Fatigue and stress corrosion cracking do not interact, at least in a measurable degree, because of the different crack path of the two fracture processes. Results can be assessed quantitatively with the “process competition model”.  相似文献   

11.
Fatigue Damage Development of Various CFRP-Laminates The behaviour of a woven carbon-fibre reinforced laminate in a balanced eight-shaft satin weave style was compared to non-woven laminates with an equivalent cross-ply lay-up (50% of the fibres in the 0° and 50% in the 90° direction) Two types of non-woven laminates were investigated consisting of continuous fibres and aligned discontinuous fibres, both produced from carbon fibre prepregs. The static strength and the fatigue behaviour was measured. Stiffness reduction was monitored during fatigue loading as a damage analogue to which the mechanisms of damage could be associated. Similarities and differences in the fatigue behaviour and damage development of the three laminates will be discussed.  相似文献   

12.
In this paper thermal fatigue of magnesium base alloy AZ31 in the temperature range between +50°C and +290°C is investigated. Experiments were carried out under constant total deformation (out‐of‐phase loading) and the resulting stress amplitudes as well as the plastic strain amplitudes were recorded as a function of the number of thermal loading cycles. In particular the consequences of mechanical surface treatments (deep rolling) and of hold‐times were investigated. In both cases no particular influence compared with untreated specimens loaded without hold‐times was observed, which is due to the interaction of deformation and recrystallization processes during thermal fatigue.  相似文献   

13.
Influence of humidity and microstructure on the tribological behaviour of silicon carbide ceramic in unidirectional sliding contact Tribological tests were carried out on self‐mated SiC in a laboratory tribometer (system: flattened ball‐on‐disc) to characterize the behaviour of silicon carbide ceramic under unidirectional sliding at relative humidities between 5% and 80%. Furthermore the influence of distilled water in the contact zone was investigated on friction and wear. The microstructures of the SiC ceramics variied concerning size and shape of the crystallites, pores and graphite particles. The results show that the friction coefficient increased with increasing relative humidity while the amount of linear wear tended to decrease simultaneously. The smallest friction coefficient and also a relatively small amount of linear wear were measured at the presence of distilled water compared to sliding contact in humid air. Tribological mechanisms could be explained based on studies of the worn surfaces by scanning electron microscopy and atomic force microscopy as well as considering the experimental data recorded during and after the tests.  相似文献   

14.
The present paper contains research results determined within the framework of a project called IBESS (?Integrale Bruchmechanische Ermittlung der Schwingfestigkeit von Schweißverbindungen“) by the Materials Mechanics Group of the Technische Universität Darmstadt [1]. Aim is to calculate the fatigue life of welded joints by taking into account the effect of residual stresses and the influence of the weld toe geometry. Here, the fatigue life is regarded as period of short fatigue crack growth. Two and three dimensional finite element models, with cracks as initial defects, are constructed for this purpose. Fatigue crack growth analyses are performed by using the node release technique together with the finite element program ABAQUS. The welding residual stresses as well as the plasticity induced crack closure effects are considered. Structural calculations are performed in order to introduce residual stress fields in finite element models. The calculated compressive residual stress field matches the measured one especially in the weld notch area. The effective cyclic J‐integral (ΔJeff) is used as crack tip parameter in a relation similar to the Paris equation for the calculation of the fatigue life. For this purpose, a Python code was written for the determination of ΔJeff at every crack length phase. The calculated fatigue lives were compared with experimental data and a good accordance between both results was achieved. The impact of welding residual stresses on ΔJeff as well as on the fatigue life during short crack growth was investigated. As expected, results revealed that at lower stress amplitude, a compressive residual stress field is favorable to the fatigue life, whilst a tensile residual stress field is unfavorable. The influence of residual stresses can be neglected only for large load amplitudes.  相似文献   

15.
The Fatigue Behavior of SiSiC For design purposes the engineering property datas especially the fatigue behavior of silicon carbide (SiSiC) were determined. Using linear elastic fracture mechanics the datas for slip casted and extruded SiSiC-samples were measured at room temperature. The correlation between stress, probability of failure, and time is shown in SPT-diagrams.  相似文献   

16.
Fatigue Behaviour of Bolted Connections In bolted connections the bolt must withstand under alternating forces the resulting fatigue loads at each local area. Therefore the endurance limit of the first stressed engaged thread in the nut or tapered hole is related to the thread diameter, the nut heigth and the strength ratio of the bolt and nut. It is shown which influence on the fatigue limit has the thread profile, the pitch-diameter-ratio, the prestress in relation to the strength grade of the bolt and the thread rolling process before or after heat treatment. Additional bending will cause a significant loss of fatigue strength, while high temperature application does not decrease the fatigue limit.  相似文献   

17.
Thermal fatigue of magnesium‐base alloy AZ91 Thermal fatigue tests of the magnesium‐base alloy AZ91 were carried out under total strain control and out‐of‐phase‐loading conditions in a temperature range between ‐50°C and +190°C. Specimens produced by a vacuum die casting process were loaded under constant total strain and uniaxial homogeneous stress. To simulate the influence of different mean stresses, experiments were started at different temperature levels, e.g. the lower, mean or upper temperature of the thermal cycle. The thermal fatigue behavior is described by the resulting stress amplitudes, plastic strain amplitudes and mean stresses as a function of the number of thermal loading cycles. Depending on the maximum temperature and the number of loading cycles, cyclic softening as well as cyclic hardening behavior is observed. Due to the complex interaction of deformation, recovery and recrystallization processes and as a consequence of the individual temperature and deformation history, thermal fatigue processes of the material investigated cannot be assessed using results of isothermal experiments alone. The upper temperatures or the resp. temperature amplitudes determine the total fatigue lifetime.  相似文献   

18.
Fatigue Behaviour of Rigid Cellular Plastics The fatigue behaviour of crosslinked and non-crosslinked rigid cellular PVC had been investigated for tensile, compressive, and shear stresses, and displayed by means of Wöhler diagrams. In dynamic extension/compression loading, precompression shortens the life of the specimen, while pre-extension lengthens it - within certain limits. This behaviour can be explained by the different forms of the stress-strain curves in extension and compression. Detailed analysis of the hysteresis loops, including evaluation of the strains, energy uptake, and damping value, allows conclusions to be drawn about the behaviour of the material when subjected to dynamic loads and the degree of approach to failure. Although cellular plastics are poor thermal conductors there is very little rise in temperature when they are subjected to dynamic loads.  相似文献   

19.
Fatigue behaviour of a laser welded pseudoelastic NiTi alloy under bending stresses The mechanical fatigue of small specimens of a commercial pseudoelastic NiTi alloy produced by laser welding and laser cutting was investigated in strain-controlled bending tests. In comparison with the base material the butt welded specimens showed significantly reduced numbers of cycles to failure. This is mainly caused by higher local strains due to height reductions in the welded joints. Both the welded microstructure and the unwelded one was able to be loaded up to 107 cycles without failure if the strain amplitude remained below 1%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号