首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. The main process parameters are the weld frequency, the amplitude of the vibratory motion, the weld pressure, and the weld time or weld penetration.; The effects of these parameters on weld quality were systematically studied by first butt welding thermoplastic specimens under controlled conditions, over a wide range of process parameters, and by then determining the strengths and ductilities of these welds by tensile tests. The three thermoplastics investigated are poly (butylene terephthalate), polyetherimide, and modified polyphenylene oxide. Changes in the weld pressure are shown to have opposite effects on the strengths of polyetherimide and modified polyphenylene oxide welds; Also, the weld frequency is shown to have a significant effect on the weldability of polyetherimide. The weldability data for these three thermoplastics are compared with data for polycarbonate. Under the right conditions, the strengths of butt welds in these materials are shown to equal the strength of the virgin polymer.  相似文献   

2.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. The main process parameters in vibration welding are the weld frequency, the amplitude of the vibratory motion, the weld pressure, and the weld time. How these parameters affect weld quality, the conditions that result in the best welds, the weldability of dissimilar plastics, and the effect of fillers such as glass are of interest. To address these issues, a research vibration welding machine in which all the parameters can be independently and accurately controlled and monitored was designed and fabricated. The phenomenology of welding, as determined by experiments on the four thermoplastics polycarbonate, poly (butylene terephthalate), polyetherimide, and modified poly (phenylene oxide), is described.  相似文献   

3.
Under the right conditions, high strengths are shown to be achievable in vibration welded polycarbonate to polyetherimide Joints. While welding of thermoplastic interfaces of the same material can be understood in terms of interchain diffusion at elevated temperatures, this mechanism is severely limited in the case of dissimilar materials. Scanning electron microscopy is used to show that part of the bond strength in such dissimilar materials results from mechanical interlocking of the two polymers, which is caused by viscous mixing. The effects of the weld parameters on the weld morphology are considered in detail.  相似文献   

4.
Under the right conditions, the strength of vibration-welded butt joints of amorphous polycarbonate (PC) to semicrystalline poly(butylene terephthalate) (PBT) are shown to be as high as the strength of PBT, the weaker of the two materials. Optical, scanning and transmission electron microscopy are used to examine the morphology of the weld zone. Acoustic microscopy is used to visualize poorly bonded regions. The effects of the weld parameters on weld strength and weld morphology are considered in detail.  相似文献   

5.
The strengths of glass-filled modified polyphenylene oxide (GF-MPPO) welds relative to the strengths of GF-MPPO are shown to depend on specimen thickness. (Modified polyphenylene oxide is a blend of poly (2,6-dimethyl-1,4-phenylene ether) and high-impact polystyrene.) Relative strengths on the order of 70 and 87 percent can be achieved in 6.1 and 3.18-mm-thick specimens, respectively. Welds of GF-MPPO to modified polyphenylene oxide (MPPO) can easily attain the strength of MPPO, the weaker of the two materials. In contrast to MPPO, in which weld strength decreases with increased weld pressure, the strengths of GF-MPPO to GF-MPPO welds and GF-MPPO to MPPO welds, are not affected by weld pressure.  相似文献   

6.
In induction welding of thermoplastics, induction heating of a gasket, made of a ferromagnetic‐powder‐filled bonding material and placed at the interface of thermoplastic parts to be joined, is used to melt the interface; subsequent solidification of the melt results in a weld. Tensile tests on induction butt‐welds of polycarbonate (PC), poly(butylene terephthalate) (PBT), and polypropylene (PP) are used to characterize achievable weld strengths, and microscopy is used to correlate weld strength with the morphology of failure surfaces. In PC, PBT, and PP relative weld strengths as high as 48%, 43%, and 55% of the respective strengths of PC, PBT, and PP have been demonstrated. Relative weld strengths on the order of 20% have been demonstrated in PC‐to‐PBT welds.  相似文献   

7.
This study was aimed at understanding how the process conditions affect the weld‐line strength and microstructure of injection molded microcellular parts. A design of experiments (DOE) was performed and polycarbonate tensile test specimens were produced for tensile tests and microscopic analysis. Injection molding trials were performed by systematically adjusting four process parameters (i.e., melt temperature, shot size, supercritical fluid (SCF) level, and injection speed). For comparison, conventional solid specimens were also produced. The tensile strength was measured at the weld line and away from the weld line. The weld‐line strength of injecton molded microcellular parts was lower than that of its solid counterparts. It increased with increasing shot size, melt temperature, and injection speed, and was weakly dependent on the supercritical fluid level. The microstructure of the molded specimens at various cross sections were examined using scanning electron microscope (SEM) and a light microscope to study the variation of cell size and density with different process conditions.  相似文献   

8.
The weldability of poly(methyl methacrylate) (PMMA) to itself and to polycarbonate (PC), poly(butylene terephthalate) (PBT), and modified poly(phenylene oxide) (M-PPO) is assessed through 120 and 250 Hz vibration welds. Weld strengths equal to those of the base resin have been demonstrated in welds of PMMA and M-PPO to themselves. In welds of PMMA to PC and to M-PPO, weld strengths equal to those of PC and M-PPO, respectively, have been demonstrated. PMMA does not weld well to PBT; the highest weld strength obtained was 21% of the strength of PBT resin.  相似文献   

9.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. Past work on welding characterized the effects of weld parameters such as the weld frequency, the weld pressure, and the weld time, on the welding process and weld strength, and showed that the most important parameter affecting weld strength Is the weld penetration—the decrease in the distance between the parts being welded that is caused by lateral outflow of material in the molten film. However, those weld studies were based on specimens of constant nominal thickness (6.35 mm, 0.25 in). This paper is concerned with the effects of specimen thickness on the weld process and weld strength.  相似文献   

10.
Tensile and fatigue properties of an injection molded short E‐glass fiber reinforced polyamide‐6,6 have been studied as a function of two key injection molding parameters, namely melt temperature and hold pressure. It was observed that tensile and fatigue strengths of specimens normal to the flow direction were lower than that in the flow direction, indicating inherent anisotropy caused by injection molding. Tensile and fatigue strengths of specimens with weld line were significantly lower than that without weld lines. For specimens in the flow direction, normal to the flow direction and with weld line, tensile strength and fatigue strength increased with increasing melt temperature as well as increasing hold pressure. The effect of specimen orientation on the tensile and fatigue strengths is explained in terms of the difference in fiber orientation and skin‐core morphology of the specimens. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers.  相似文献   

11.
工艺参数对注塑件熔接痕性能的影响   总被引:9,自引:0,他引:9  
杨风霞  姜小莹  汤波 《塑料工业》2006,34(9):33-35,47
概述了注塑件熔接痕的分类及特点;分析了工艺参数主要包括熔体温度、模具温度、充模速度、注射时间、注射压力、保压压力、后处理等对熔接痕的外观及性能的影响。着重阐述了各工艺参数对熔接痕性能影响的研究进展;综述了优化工艺参数和研究工艺参数对熔接痕影响程度的研究以及数值模拟技术,并从工艺方面提出了减小熔接痕损害的方法。  相似文献   

12.
The relationship of joint strength of solvent welded joints of polycarbonate to their microstructure is investigated. We used three solvents - butanone, acetone, and cyclohexanone - to test the effect of solubility parameters, and a mixture of cyclohexanone with ethanol to test the effect of a cosolvent; the effect of variation of welding temperature-on both the joint strength and the microstructure is also investigated. Three fracture modes in shear, tensile and tear tests are analyzed. Polycarbonate treated with butanone has maximum joint strength. Cyclohexanone at 78 vol% in ethanol produces the maximum joint strength of polycarbonate. The joint strength of polycarbonate joints welded with cyclohexanone increases with the temperature at which the weld is made. Comparing microstructure with joint strength, tongues, equiaxed dimples and elongated dimples are responsible for the maximum shear, tensile and tear strength, respectively.  相似文献   

13.
Thermoplastic window frames are made by hot-tool welding mitered, extruded profiles. The effects of weld process conditions on the strengths of hot-tool butt joints are investigated for a grade of acrylonitrile-butadiene-styrene that was specially developed for window-frame applications. Vibration-weld strength data, obtained on a research machine in which all the process variables can be independently controlled, are used to benchmark strengths of hot-tool welds made on a commercial welding machine. Process differences between hot-tool butt welding and the hot-tool welding of mitered, extruded profiles are discussed.  相似文献   

14.
In vibration welding of thermoplastics, frictional heat generated by vibrating two parts under pressure, along their common interface, is used to effect welds. In the normal, well-understood mode, the vibratory motion is along the weld seam, which is at right angles to the thickness direction for straight boundaries. But in many applications, such as in the welding of closed seams of box-like parts, this vibratory motion occurs in the part-thickness direction, so that a portion of the molten layer along the seam is exposed to the ambient air during each vibratory cycle. The resulting reduction in temperature can affect weld quality. The process phenomenology and the weld strengths of such cross-thickness vibration-welded butt joints are investigated for four neat resins. Weld amplitudes and weld pressures are shown to affect the strengths of 120-Hz welds differently. It is shown that strengths on the order of the strengths of the neat resins can be achieved in 250-Hz butt welds.  相似文献   

15.
The weldabilities of two commercial blends of polycarbonate (PC) and acrylonitrile‐butadiene‐styrene (ABS) to themselves and to several other resins and blends are assessed through 120 Hz vibration welds of 6.35‐ and 3.2‐mm‐thick specimens. While the thicker specimens of both blends have relative weld strengths of 83%, the thinner specimens in one of the grades have a lower relative weld strength of 73%. Welds of thicker specimens of both grades to PC have relative strengths of 85%. Again, welds of thinner specimens of one of the grades to PC have a lower relative strengths of 68%. Welds of the thinner specimens of this grade with ABS have relative strengths of 85%. Welds of this material with poly(butylene terephthalate) (PBT), a PC/PBT blend, modified poly(phenylene oxide), and a poly(phenylene oxide)/polyamide blend, have relative weld strengths of 45%, 26%, 76%, and 20%, respectively.  相似文献   

16.
Welded joints were made under a range of conditions in polypropylene, glass fiber reinforced polypropylene and poly (methylmethacrylate) bars. Melt flow in the weld was investigated by microscopy and by contact microradiography, and weld strengths were measured by tensile tests. The fracture toughness of the weld zone was determined by tests on double edge notched specimens. The study shows that weld strength is strongly affected by hot plate temperature, heating time and melt flow during welding. Insufficient heating or melt flow results in incomplete bonding. Excessive melt flow produces strong transverse orientation. Both reduce strength, but in different ways, which can be distinguished by fracture mechanics tests.  相似文献   

17.
The weldability of three blends of poly(phenylene oxide) and poly(phenylene sulfide), each with a different level or type of impact modifier, is assessed through 120 and 240 Hz vibration welds. The type of impact modifier is shown to have a large effect on the strength and ductility of welds. Weld strength in these blends is shown to be sensitive to the weld frequency; higher weld strengths are attained at the higher weld frequency. In these three blends, maximum relative weld strengths of about 70%, 85%, and 87% have been demonstrated at a weld frequency of 240 Hz. The highest weld strength in each of these three blends is achieved at different weld pressures.  相似文献   

18.
The weldability of polylactic acid (PLA) is examined in this article. Biaxially oriented PLA films of various thicknesses were joined with impulse and ultrasonic welding techniques. Relatively high weld strengths were achieved with impulse welding over a wide range of welding parameters. Ultrasonic welding produced high weld strengths with relatively short cycle times. In detail, ultrasonic welded samples had a weld factor (weld strength/base material strength) of 1 at cycle times of 0.25 sec. The weld factor was significantly lower at shorter weld times and weld times above 0.35 sec. In contrast, 100‐μm thick samples joined by impulse welding for 2–3 sec had a weld factor of 1 and a standard deviation of only ±5%. The peak temperature during the impulse welding was measured to determine the fusion temperatures of the films. Mechanical, thermal, and optical analysis was used to examine the properties of the PLA at various welding and annealing conditions. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
Laser transmission welding (LTW) is a technique for joining thermoplastics. During contour LTW, any gaps or spaces between the two parts along the weld seam may prevent a weld from forming. This work presents an experimental study on the effects of material property (carbon black level, glass fibers, and crystallinity), process parameters (laser scan power and scan speed), and weld gap thickness on the strength and microstructure of contour welds made of polycarbonate (PC), polyamide 6 (PA6), and PA6 reinforced with 30% glass fiber. Lap specimens, with weld lines parallel to the load direction during mechanical testing, were used to assess the weld shear strength. The results indicated that low concentrations of laser absorbing pigment accompanied by high laser power improve gap bridging. The study also indicated that a novel noncontact test method can be used to search for the optimized process parameters for gap bridging. The maximum gaps bridged were 0.2, 0.4, and 0.25 mm for PC, PA6, and reinforced polyamide 6, respectively. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
Vibration welding of dissimilar nylons is a promising technique for assembling complex components made of different polymers. The effects of pressure and meltdown on the tensile strength of nylon 6 (PA 6) to nylon 66 (PA 66) vibration welds were determined in this study using an experimental design and three weld geometries. Weld strengths were generally improved by increasing meltdown and decreasing weld pressure. The weld strength was also shown to vary with the position of the lower melting material for T‐welds. Using differential scanning calorimentry and fracture surface analyses, it is concluded that for all geometries, higher weld strengths can be achieved when both materials are melted. Polym. Eng. Sci. 44:760–771, 2004. © 2004 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号