首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The feasibility of using a heat pump is considered as an alternative to other forms of drying where low temperature drying of a substance is necessary, either through quality control or because of inherent vulnerability to higher temperatures. This paper describes the construction and instrumentation of a purpose-built dryer, using uniformly saturated cotton as a constant drying load. The machine incorporates both a heat pump cycle using R12 refrigerant and also controllable electrical resistance heaters. A liquid-line subcooler is included to remove heat from the system. Instrumentation includes measurements of wet and dry bulb temperature, refrigerant temperature and pressure, air and refrigerant flow rates, and thermal and electrical energy. Drying rate is monitored by weighing samples.  相似文献   

2.
3.
Drying is one of the most energy intensive unit operations. In many applications the drying temperatures required are low enough to make the inclusion of a heat pump in the system worthy of consideration. Five drying/dehumidification systems, including three with heat pumps, have been compared theoretically on the basis of specific power consumption (SPC), (i.e. the energy supplied per unit of moisture condensed) and primary energy consumption (PEC) which is (SPC) divided by the efficiency of primary energy conversion. The efficiency of each system is improved as the relative humidity of the air leaving the dryer is increased. The optimum is, however, very flat and a heat pump should be advantageous when a minimum relative humidity of 30 per cent is acceptable within the drying chamber. A closed cycle dryer is shown to be the most advantageous but requires careful matching.  相似文献   

4.
An experimental heat pump dehumidifier is described. Actual coefficients of performance (COP)A are plotted against the gross temperature lift (TCO - TEV) for various bypass ratios and air velocities. Interpolated values of (COP)A for a specified temperature lift were obtained by fitting each set for various dry bulb temperatures of air leaving the humidifier using a linear equation. These values of (COP)A are plotted against the linear velocity of the air stream approaching the evaporator at different dry bulb temperatures. The curves show a maximum of (COP)A at approach velocities in the region of 1·6 ms?1.  相似文献   

5.
The experimental and predicted performance of a prototype heat pump assisted continuous dryer is reported. The dryer was shown to be capable of specific moisture extraction rates (SMERs) of between 1.5 and 2.5 kg/kWh using wetted foam rubber as the test material being dried. The results highlight the importance of maintaining conditions of high relative humidity within the air stream entering the evaporator; an increase in the relative humidity from 30 to 80% was shown to give a two-fold increase in the SMER. An optimum evaporator bypass air ratio of between 60 and 70% was observed for this dryer. The effects on performance of deviations from this optimum condition were found to be less significant than had been indicated by earlier models. The predicted performance of the dryer using a simulation model developed previously by the authors was in good agreement with the corresponding measured values.  相似文献   

6.
太阳能液体除湿空调性能的实验研究   总被引:10,自引:0,他引:10  
在对液体除湿机理研究的基础上,建立了太阳能液体除湿空调系统实验台,采用氯化钙溶液作为除湿剂,对系统的除湿性能进行了实验研究,对影响除湿的各主要因素进行了分析。  相似文献   

7.
In the last rice harvest season, experimental results have been obtained on the efficiency and drying quality of a solar assisted heat pump drying prototype system. The system has been operated as a solar and heat pump system and drying curves for the different options have been obtained. The advantage of the low temperature and better control in the drier shows that the heat pump assisted solar drying system is an excellent alternative to traditional drying systems.  相似文献   

8.
The performance of an experimental heat-pump-assisted dryer under operating conditions of some practical interest was studied. The system was operated using R11 and R12. The approach velocity of air to the evaporator and the superheat of the working fluid at the exit of the evaporator were identified as the critical parameters for optimization. The system was evaluated with respect to coefficient of performance (COP) and specific energy consumption (SEC). The (COP)A, and (SEC) values obtained using R11 were 3.5 and 3500 kJ/kg, respectively, and the corresponding values for R12 were 2.5 and 1800 kJ/kg. In spite of the lower (COP)A, for R12, the corresponding (SEC) values were better because the system could be operated without any additional electrical heating with R12.  相似文献   

9.
A chemical heat pump for upgrading low-level thermal energy has been proposed by adopting a reversible organic reaction couple, endothermic liquid-phase dehydrogenation of 2–propanol at low temperature and exothermic gas-phase hydrogenation of acetone at high temperature, where thermodynamical work is done by separating condensed 2–propanol from the gaseous mixture of 2–propanol, acetone and hydrogen in a fractionation column. In the system constitution of the continuous type, the overhead vapour of the fractionation column is fed through the heat exchanger into the exothermic reactor, where acetone and hydrogen in excess are changed at 200°C into the equilibrium mixture, from which condensable 2–propanol is separated in the column by cooling at 30°C. The reverse reaction of 2–propanol decomposition into acetone and hydrogen proceeds in the endothermic reactor, i.e. the reboiler of the column, absorbing heat at 80°C. On the contrary, acetone and hydrogen in the overhead vapour of the fractionation column are stored at 30°C as liquid and metal hydride, respectively, in the system constitution of the storage type; when necessary, metal hydride is decomposed by heating at 80°C, with hydrogen at high pressure evolved and fed through the heat exchanger into the exothermic reactor, giving the equilibrium mixture at high pressure and temperature. Product condensates are transferred through a valve into the fractionation column in order to separate 2–propanol and acetone, the former of which is dehydrogenated in the endothermic liquid-phase reactor, regenerating acetone and hydrogen at 80°C and atmospheric pressure. Energy efficiencies were evaluated for the system constitutions of both the continuous and storage types; the 80°C heat supplied was convertible into the 200°C heat continuously at the enthalpy efficiency or coefficient of performance (COP) of 0·36 in the former, whereas the 270°C heat was obtainable with the aid of metal hydride from the same heat source at COP of 0·21 in the latter.  相似文献   

10.
K. Gommed  G. Grossman   《Solar Energy》2007,81(1):131-138
Growing demand for air conditioning in recent years has caused a significant increase in demand for primary energy resources. Solar-powered cooling is one of the environmentally-friendly techniques which may help alleviate the problem. A promising solar cooling method is through the use of a liquid desiccant system, where humidity is absorbed directly from the process air by direct contact with the desiccant. The desiccant is then regenerated, again in direct contact with an external air stream, by solar heat at relatively low temperatures. The liquid desiccant system has many potential advantages over other solar air conditioning systems and can provide a promising alternative to absorption or to solid desiccant systems.Earlier work by the authors included theoretical simulations and preliminary experiments on the key components of the liquid desiccant system. The objective of the present study has been to construct a prototype system based on the knowledge gained, to monitor its performance, identify problems and carry out preliminary design optimization. A 16 kWt system was installed at the Energy Engineering Center at the Technion, in the Mediterranean city of Haifa. The system comprises a dehumidifier and a regenerator with their associated components operating together to dehumidify the fresh (ambient) air supply to a group of offices on the top floor of the building. LiCl-water is employed as the working fluid. The system is coupled to a solar collector field and employs two methods of storage – hot water and desiccant solution in the regenerated state. The performance of the system was monitored for five summer months under varying operating conditions. The paper describes the operation of the experimental system and presents the measured data and the calculated performance parameters.  相似文献   

11.
The principle of the absorption process is described and its versatility demonstrated. A wide range of applications, from household refrigerators to topping processes in power plants, are surveyed in an historical perspective. the production of mechanical energy and open systems are also included. Modern developments are reviewed, special attention being given to the aspets of thermal energy storage.  相似文献   

12.
This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38°03′, long. E114°26′), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth.  相似文献   

13.
A walk-in type hemi cylindrical solar tunnel dryer has been built with heat protective north wall at College of Dairy and Food Science Technology, Udaipur, India for drying agricultural & horticulture product on large scale. In this paper attempt has been made to evaluate the performance of developed dryer to dry the seedless grapes (mutant:Sonaka). The study show that chemically untreated grapes took seven days to dry at 16% (wb) moisture content. The temperature gradient inside the tunnel dryer is about 10–28 °C during the clear day, which is quite sufficient to dry agricultural commodities.  相似文献   

14.
The use of a combined solar-heat pump rice drying system is being developed as an alternative to conventional mechanical dryers. The experimental equipment developed is a modified 7 kW R-22 air conditioning unit and is combined with a solar colector for a more precise control of temperature and humidity.  相似文献   

15.
The economic viability of air heating for grain drying with the aid of heat pumps and the viability of replacing existing heating methods (i.e. direct electrical heaters and diesel burners) with heat pumps are investigated. The energy costs of different types of heating apparatus to dry grain are calculated and, taking the different capital costs into account, the life cycle costs of the heating methods can be predicted. On comparing the life cycle costs of the different heating methods, it is concluded that heat pumps are more economical than other methods of heating provided that the apparatus is used for more than a minimum period per year. Drying of grain is usually done for periods shorter than this minimum; the result is that the use of heat pumps cannot be economically justified for the drying of grain only.  相似文献   

16.
Power generation systems are attracting a lot of interest from researchers and companies. Storage is becoming a component with high importance to ensure system reliability and economic profitability. A few experiences of storage components have taken place until the moment in solar power plants, most of them as research initiatives. In this paper, real experiences with active storage systems and passive storage systems are compiled, giving detailed information of advantages and disadvantages of each one. Also, a summary of different technologies and materials used in solar power plants with thermal storage systems existing in the world is presented.  相似文献   

17.
Building legislation along with environmental and comfort concerns are increasingly driving designers of building services and air conditioning equipment towards more energy efficient solutions. Heat pipe technology is emerging as a viable, efficient and environmentally-sound technology for applications in efficient air handling unit designs. In this paper, an experimental investigation on the thermal performance of an air-to-air heat exchanger, which utilises heat pipe technology, will be presented. The heat exchanger consisted of 7 loop heat pipes with finned evaporator and condenser sections. The heat exchanger was fully instrumented to test for the effect of the variation of heat load and the air velocity, through the heat exchanger, on the overall thermal resistance of the loops. The values of the effectiveness of the heat pipe heat exchanger are shown to vary with the air velocity as expected but the results also allow the prediction of effectiveness variation with the heat load and operating temperature (previously assumed to be constant). The results allow an interpretation of the overall thermal performance of each loop heat pipe as a function of the load and air velocity. The paper concludes with a theoretical analysis of the energy savings that would be expected when utilising the technology in a representative application.  相似文献   

18.
The low-temperature pyrolysis of the mixture of nine typical components from municipal household garbage has been experimentally studied in an externally heated fixed-bed pyrolyser, at temperatures ranging from 300 to 700 °C. The yields of final pyrolysis product varying with temperatures are presented in this paper. The solid product yield decreases with the increase of temperature in the test temperature range, and reduces quickly at 300–550 °C but very slowly at 550–700 °C. However, the pyrolysis liquid yield increases with the increase of temperature, but reaches the maximum at 550 °C, and afterwards begins to decline. Among liquid product, cream-shaped tar is found, the yield of which also reaches the maximum at 550 °C. The pyrolysis gas yield steadily increases with the increase of temperature at the whole test temperature range. The above-mentioned experimental results could be helpful to the practical application of low-temperature pyrolysis of municipal household garbage.  相似文献   

19.
Drying is an energy intensive and time consuming process, so reducing amount of demanded energy and drying time are important issues for drying technology. The main aim of this paper is to analyze the drying characteristics of mint leaves in a new cylindrical form of drying chamber at low drying air temperature and by emphasizing on energy analysis. The dryer consists of air source heat pump system, air to air heat recovery unit and proportional temperature controller. Experiments were performed at 2, 2.5 and 3 m/s air velocities and at 35 °C cabin inlet air temperature. Mint leaves were dried from 9 g water/g dry matter to 0.1 g water/g dry matter. Designed drying chamber, with three stainless steel cylinders in circular nested form, has a positive effect for drying technology. This system has some advantages such as: drying of product by accessing a uniform air flow and preventing spread of light weight samples like mint leaves over drying system. Calculations based on experimental data show that in the best case, by consuming 3.164 kWh energy in a heat pump with 3.94 coefficients of performance, 4.56 kWh energy had been gained by heat recovery unit. Average 48% of energy was saved by means of heat recovery unit. Effective moisture diffusivity values varied from 3.50E?11 to 5.88E?11 for mint leaves.  相似文献   

20.
This paper aims to evaluate the experimental performance of a convective-infrared system with heat recovery (CIRHR) at different drying temperatures (40, 45, 50 and 55 °C) and 0.5 m/s air velocity and also to discuss and predict the performance of system on energy consumption and drying kinetics of sliced kiwifruit using artificial neural networks (ANNs). The energy efficiency values were obtained between 2.85% and 32.17%. The ANN model was used to predict the energy consumption of the system and moisture content of the kiwifruit. The back-propagation learning algorithm with Levenberg–Marquardt (LM) and Fermi transfer function were used in the network. The coefficient of determination (R2), the root means square error (RMSE) and the mean absolute percentage error (MAPE) were calculated as 0.99, 0.001 and 0.34, respectively. It can be concluded that predicted values are in good agreement with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号