首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solid-state polymer electrolytes (SPEs) have attracted significant attention owing to their improvement in high energy density and high safety performance. However, the low lithium-ion conductivity of SPEs at room temperature restricts their further application in lithium-ion batteries (LIBs). Herein, we propose a novel poly (ethylene oxide) (PEO)-based nanocomposite polymer electrolytes by blending boron-containing nanoparticles (BNs) in the PEO matrix (abbreviated as: PEO/BNs NPEs). The boron atom of BNs is sp2-hybridized and contains an empty p-orbital that can interact with the anion of lithium salt, promoting the dissociation of the lithium salts. In addition, the introduction of the BNs could reduce the crystallinity of PEO. And thus, the ionic conductivity of PEO/BNs NPEs could reach as high as 1.19 × 10−3 S cm−1 at 60°C. Compared to the pure PEO solid polymer electrolyte (PEO SPEs), the PEO/BNs NPEs showed a wider electrochemical window (5.5 V) and larger lithium-ion migration number (0.43). In addition, the cells assembled with PEO/BNs NPEs exhibited good cycle performance with an initial discharge capacity of 142.5 mA h g−1 and capacity retention of 87.7% after 200 cycles at 2 C (60°C).  相似文献   

2.
Quaternary plasticized solid polymer electrolyte (SPE) films composed of poly(ethylene oxide), LiClO4, Li1.3Al0.3Ti1.7(PO4)3, and either ethylene carbonate or propylene carbonate as plasticizer (over a range of 10–40 wt%) were prepared by a solution‐cast technique. X‐ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) indicated that components such as LiClO4 and Li1.3Al0.3Ti1.7(PO4)3 and the plasticizers exerted important effects on the plasticized quaternary SPE systems. XRD analysis revealed the influence from each component on the crystalline phase. DSC results demonstrated the greater flexibility of the polymer chains, which favored ionic conduction. SEM examination revealed the smooth and homogeneous surface morphology of the plasticized polymer electrolyte films. EIS suggested that the temperature dependence of the films' ionic conductivity obeyed the Vogel–Tamman–Fulcher (VTF) relation, and that the segmental movement of the polymer chains was closely related to ionic conduction with increasing temperature. The pre‐exponential factor and pseudo activation energy both increased with increasing plasticizer content and were maximized at 40 wt% plasticizer content. The charge transport in all polymer electrolyte films was predominantly reliant on lithium ions. All transference numbers were less than 0.5. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
In this study, a strategy for synthesizing lithium methacrylate (LiMA)-based self-doped gel polymer electrolytes was described and the electrochemical properties were investigated by impedance spectroscopy and linear sweep voltammetry. LiMA was found to dissolve in ethylene carbonate (EC)/diethyl carbonate (DEC) (3/7, v/v) solvent after complexing with boron trifluoride (BF3). This was achieved by lowering the ionic interactions between the methacrylic anion and lithium cation. As a result, gel polymer electrolytes consisting of BF3-LiMA complexes and poly(ethylene glycol) diacrylate were successfully synthesized by radical polymerization in an EC/DEC liquid electrolyte. The FT-IR and AC impedance measurements revealed that the incorporation of BF3 into the gel polymer electrolytes increases the solubility of LiMA and the ionic conductivity by enhancing the ion disassociations. Despite the self-doped nature of the LiMA salt, an ionic conductivity value of 3.0 × 10−5 S cm−1 was achieved at 25 °C in the gel polymer electrolyte with 49 wt% of polymer content. Furthermore, linear sweep voltammetry measurements showed that the electrochemical stability of the gel polymer electrolyte was around 5.0 V at 25 °C.  相似文献   

4.
Solid polymer electrolytes containing phosphotungstic acid (PWA) and/or silicotungstic acid (SiWA) in polyvinyl alcohol (PVA) were investigated for their proton conductivities. Enhanced conductivity was obtained when mixing PWA and SiWA at equal ratio. This polymer electrolyte was found viable for electrochemical capacitors. Thermal and structural analyses were conducted with DSC, XRD, and FTIR. The polymer electrolyte exhibited a different structure and different thermal properties from its respective components. The polymer electrolyte retained its original Keggin structure but contained crystallized protonated water in the form of H5O2+. The protonated water may contribute to the proton conductivity of the polymer electrolyte.  相似文献   

5.
An ionic liquid 1‐methyl‐3‐[2‐(methacryloyloxy)ethyl]imidazolium bis(trifluoromethane sulfonylimide) (MMEIm‐TFSI) was synthesized and polymerized. Composite polymer electrolytes based on polymeric MMEIm‐TFSI (PMMEIm‐TFSI) and poly[(methyl methacrylate)‐co‐(vinyl acetate)] (P(MMA‐VAc)) were prepared, with lithium bis(trifluoromethane sulfonylimide) (LiTFSI) as target ions (Li+). DSC/TGA analysis showed good flexibility and thermal stability of the composite electrolyte membranes. The AC impedance showed that the ionic conductivity of the electrolytes increased with PMMEIm‐TFSI up to a maximum value of 1.78 × 10?4 S cm?1 when the composition was 25 wt% P(MMA‐VAc)/75 wt% PMMEIm‐TFSI/30 wt% LiTFSI at 30 °C. The composite electrolyte membrane (transmittance ≥ 90%) can also be used as the ion‐conductive layer material for electrochromic devices, and revealed excellent colorization performance. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
Thermoplastic polyurethane (TPU) with a mixture of soft segments [poly(ethylene glycol) (PEG) and poly(tetramethylene glycol) (PTMG)], denoted TPU‐M, was prepared as an ion‐conducting polymer electrolyte. TPUs with PEG and PTMG as soft segments were also synthesized individually as polymer electrolytes. The changes in the morphology and ion conductivity of the phase‐segregated TPU‐based polymer electrolytes as a function of the lithium perchlorate concentration were determined with differential scanning calorimetry, Fourier transform infrared spectroscopy, alternating‐current impedance, and linear sweep voltammetry measurements. Both solid and gelatinous polymer electrolytes were characterized in this study. The effect of temperature on conductivity was studied. The conductivity changes revealed the combined influence of PTMG and PEG units in TPU‐M. The swelling characteristics in a liquid electrolyte and the dimensional stability were evaluated for the three TPUs. Because of its dimensional stability and ionic conductivity, the TPU system containing both PEG and PTMG as soft segments was found to be more suitable for electrolyte applications. A room‐temperature conductivity of approximately 1 × 10?4 was found for TPU‐M containing 50 wt % liquid electrolyte. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1154–1167, 2004  相似文献   

7.
2,4‐Toluene diisocyanate, poly(propylene glycol), poly(ethylene glycol) (PEG) and 2‐hydroxyethyl methacrylate were used to synthesize PEG–UA (urethane acrylate) monomer. The crosslinked polymer and gel polymer electrolytes were prepared in dioxane by free radical polymerization. The swelling behaviour, thermal degradation properties, morphology and ionic conductivity of the gel polymer electrolytes were investigated. With decrease in the proportion of dioxane used, the synthesized polymer's network density increased, its affinity with a solution of 1 M LiClO4 in propylene carbonate (PC) decreased, and more microgel which diffused in the network. At the same time, the conductivity increased and reached 4 × 10?4 S cm?1 at 25 °C. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
Highly ion-conductive solid polymer electrolyte (SPE) based on polyethylene (PE) non-woven matrix is prepared by filling poly(ethylene glycol) (PEG)-based crosslinked electrolyte inside the pores of the non-woven matrix. The PE non-woven matrix not only shows good mechanical strength for SPE to be a free-standing film, but also has very porous structure for high ion conductivity. The ion conductivity of SPE based on PE non-woven matrix can be enhanced by adding sufficient non-volatile plasticizer such as poly(ethylene glycol) dimethyl ether (PEGDME) into ion conduction phase without sacrificing mechanical strength. SPE with 20 wt.% crosslinking agent and 80 wt.% non-volatile plasticizer shows 3.1 × 10−4 S cm−1 at room temperature (20 °C), to our knowledge, which is the highest level for SPEs. It is also electrochemically stable up to 5.2 V and has high transference number about 0.52 due to the introduction of anion receptor as an additive. The interfacial resistance between Li electrode and SPE is low enough to perform charge/discharge test of unit cell consisting of LiCoO2/SPE/Li at room temperature. The discharge capacity of the unit cell shows 87% of theoretical value with 86% Coulombic efficiency.  相似文献   

9.
All-solid-state lithium-ion batteries (ASSLIBs) are promising alternatives to conventional organic electrolyte-based batteries due to their higher safety and higher energy densities. Despite advantages, ASSLIBs suffer from issues like high charge transfer resistances due to the brittleness of the inorganic solid electrolyte and chemical instabilities at the lithium/electrolyte interface. Within this work, we investigate composite electrolytes (CEs) based on garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO), polyethylene oxide, and lithium bis(trifluoromethanesulfonyl)imide, prepared via a solvent-free cryo-milling approach in contrast to conventional solvent-mediated synthesis. Compositions ranging from polymer-rich to garnet-rich systems are investigated via X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy in order to determine the compatibility of the cryo-milling process toward membrane fabrication along with the possible chemical interactions between the composite membrane components. Electrochemical impedance spectroscopy is used to study the role of ceramic to polymer weight fraction on ionic conductivity. It is shown that the addition of succinonitrile (SCN) to the garnet-rich CEs can significantly improve the ionic conductivity compared to the SCN-free CEs.  相似文献   

10.
Gel polymer electrolyte (GPE) was prepared using polyurethane acrylate as polymer host and its performance was evaluated. LiCoO2/GPE/graphite cells were prepared and their electrochemical performance as a function of discharge currents and temperatures was evaluated. The precursor containing a 5 vol % curable mixture had a viscosity of 4.5 mPa s. The ionic conductivity of the GPE at 20 °C was about 4.5 × 10–3 S cm–1. The GPE was stable electrochemically up to a potential of 4.8 V vs Li/Li+. LiCoO2/GPE/graphite cells showed a good high rate and low-temperature performance. The discharge capacity of the cell was stable with charge–discharge cycling.  相似文献   

11.
We propose an all solid-state (liquid free) polymer electrolyte (SPE) prepared from a hyper-branched graft copolymer. The graft copolymer consisting of a poly(methyl methacrylate) main chain and poly(ethylene glycol) methyl ether methacrylate side chains was synthesized by atom transfer radical polymerization changing the average chain distance between side chains, side chain length and branched chain length of the proposed structure of the graft copolymer. The ionic conductivity of the SPEs increases with increasing the side chain length, branched chain length and/or average distance between the side chains. The ionic conductivity of the SPE prepared from POEM9 whose POEM content = 51 wt% shows 2 × 10−5 S/cm at 30 °C. The tensile strength of the SPEs decreases with increases the side chain length, branched chain length and/or average distance between the side chains. These results indicate that a SPE prepared from the hyper-branched graft copolymer has potential to be applied to an all-solid polymer electrolyte.  相似文献   

12.
A new hybrid polymer electrolyte system based on chemical‐covalent polyether and siloxane phases is designed and prepared via the sol–gel approach and epoxide crosslinking. FT‐IR, 13C solid‐state NMR, and thermal analysis (differential scanning calorimetry (DSC) and TGA) are used to characterize the structure of these hybrids. These hybrid films are immersed into the liquid electrolyte (1M LiClO4/propylene carbonate) to form plasticized polymer electrolytes. The effects of hybrid composition, liquid electrolyte content, and temperature on the ionic conductivity of hybrid electrolytes are investigated and discussed. DSC traces demonstrate the presence of two second‐order transitions for all the samples and show a significant change in the thermal events with the amount of absorbed LiClO4/PC content. TGA results indicate these hybrid networks with excellent thermal stability. The EDS‐0.5 sample with a 75 wt % liquid electrolyte exhibits the ionic conductivity of 5.3 × 10?3 S cm?1 at 95°C and 1.4 × 10?3 S cm?1 at 15°C, in which the film shows homogenous and good mechanical strength as well as good chemical stability. In the plot of ionic conductivity and composition for these hybrids containing 45 wt % liquid electrolyte, the conductivity shows a maximum value corresponding to the sample with the weight ratio of GPTMS/PEGDE of 0.1. These obtained results are correlated and used to interpret the ion conduction behavior within the hybrid networks. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1000–1007, 2006  相似文献   

13.
Like a liquid solvent, poly(ethylene oxide) dissolves a wide variety of inorganic salts. Ionic conductivity occurs in the amorphous region of the polymer and typically both anions and cations are mobile to some extent. This paper discusses the preparation, thermal behaviour and ionic transport of thin cast films of PEO-based electrolytes containing monovalent and divalent cations. The techniques that shed light on the structure-conductivity relationship are emphasized. The temperature and composition dependence of conductivity is also considered. Finally, attention has been paid to the possible uses of these polymeric electrolytes in solid-state electrochemical devices such as primary and secondary batteries, electrochromic displays and sensors.  相似文献   

14.
We have synthesized mesoporous silica (MPSi) as a novel type of inorganic filler for polyether-based electrolytes and have characterized the effect of addition on ionic conduction. Both poly(ethylene oxide) (PEO) and PMEO composites filled with MPSi showed higher ionic conductivity than the original and the composites filled with particle silica (pSiO2). It was considered that the increase is caused by the difference in the surface area between MPSi and pSiO2. In the PEO composites, the addition of MPSi gave rise to the reduction of crystal PEO and crystalline complex domains. The glass transition temperature of the PMEO composites increased with the addition of the MPSi, in spite that the conductivity increased with increasing the filler contents. It has been suggested that the Lewis acid-base interactions between ions, ether chains and filler surface strongly affect on the ionic conduction in the composite electrolytes.  相似文献   

15.
Hybrid solid polymer electrolytes (HSPE) of high ionic conductivity were prepared using polyethylene oxide (PEO), polyacrylonitrile (PAN), propylene carbonate (PrC), ethylene carbonate (EC), and LiClO4. These electrolyte films were dry, free standing, and dimensionally stable. The HSPE films were characterized by constructing symmetrical cells containing nonblocking lithium electrodes as well as blocking stainless steel electrodes. Studies were made on ionic conductivity, electrochemical reaction, interfacial stability, and morphology of the films using alternating current impedance spectroscopy, infrared spectroscopy, and scanning electron microscopy. The properties of HSPE were compared with the films prepared using (i) PEO, PrC, and LiClO4; and (ii) PAN, PrC, EC, and LiClO4. The specific conductivity of the HSPE films was marginally less. Nevertheless, the dimensional stability was much superior. The interfacial stability of lithium was similar in the three electrolyte films. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2191–2199, 1997  相似文献   

16.
Gel polymer electrolytes were prepared with polyacrylonitrile (PAN) and solutions of a novel quaternary ammonium salt, polysiloxane with quaternary ammonium side groups (PSQAS), in a mixture of ethylene carbonate (EC) and propylene carbonate (PC). The influences of PAN content and salt concentration on the ionic conductivity have been investigated. The ionic conductivity can be further improved with the use of the mixtures of KI and PSQAS, which can be expected as inorganic-organic salts. The gel polymer electrolytes were used in the fabrication of the dye-sensitized solar cells with a nanoporous TiO2 working electrode, cis-di(thiocyanato)-N,N-bis(2,2-bipyridyl-4,4-dicarboxylic acid) ruthenium(II) complex dye and a counter electrode based on platinized conducting glass. The cells showed open-circuit voltages (V oc) around 0.6 V and short-circuit current densities (J sc) larger than 7.5 mA cm–2 under 60 mW cm–2 irradiation. The fill factors (FF) and energy conversion efficiencies () of the cells were calculated to be higher than 0.56 and 4.4%, respectively.  相似文献   

17.
A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1′-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.  相似文献   

18.
Mesoporous silica SBA-15 was surface-modified by γ-glycidoxypropyltrimethoxy silane (GPTMS), and novel poly(ethylene oxide) (PEO)-based composite polymer electrolytes (CPE) using the silane-modified SBA-15 (SBA-15-GPTMS) as filler were prepared and characterized. The results of the low-angle X-ray diffraction (XRD) patterns and Fourier-transform infrared (FT-IR) spectroscopy indicated that GPTMS has been successfully attached to the surface of SBA-15 with a high degree of mesoscopic hexagonal pore structure. The incorporation of SBA-15-GPTMS in the PEO-LiClO4 matrix effectively reduced the PEO crystallinity and obviously improved the conductivity and electrochemical stability of the CPEs. The CPE with 10 wt.% SBA-15-GPTMS provided the highest conductivity among all the tested CPEs, about 2-3 orders of magnitude higher than that of the PEO-LiClO4 matrix below the melting temperature of PEO. The reasons that the CPEs using SBA-15-GPTMS as filler showed higher conductivity than that with SBA-15 were discussed.  相似文献   

19.
系统地介绍了锂离子二次电池电解质,特别是聚合物电解质及离子液体电解质的应用研究现状。开发具有高能量密度、稳定的充放电性能、循环寿命长、可塑性、高安全性与低成本的锂离子电池是当前的研究热点。离子液体具有较高的离子电导率、宽电化窗口,且无蒸汽压,而聚合物具有良好的机械加工性能。二者的结合将为锂离子电池电解质的研究提供了新的开发思路。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号