共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Adhesion Science and Technology》2013,27(1):541-550
—Contact angle studies of miscible poly(vinyl chloride)/epoxidized natural rubber (PVC/ ENR) blends were carried out in air using water and methylene iodide. The solid surface free energy was calculated from harmonic mean equations. Blending of PVC and ENR decreased their contact angle or increased their solid surface free energy due to the improved chain mobility, and the accumulation of excess polar sites at the surface through conformational alterations resulting from the specific interaction of PVC and ENR. The work of adhesion, interfacial free energy, spreading coefficient, and Girifalco-Good's interaction parameter changed markedly with the blend composition. In blends, PVC and ENR improved hydrophilicity, and wettability with polar and non-polar liquids. The presence of a plasticizer in PVC, in general, further improved the wettability and hydrophilicity in blends. 相似文献
2.
Blends from poly(vinyl chloride) (PVC) and epoxidized natural rubber (ENR) were prepared in a Brabender plasticorder by the melt blending technique. The melt flow behavior of these blends with respect to blend ratio and temperature has been examined using a melt flow indexer and capillary rheometer. ENR decreases the Brabender torque, increases the melt flow index (MFI), and decreases the melt viscosity of PVC in the blends. Arrhenius plots were used to study the effect of temperature on melt flow index (MFI) and viscosity. Moreover, the flow behavior index (n′) obtained from capillary rheometer data was found to be dependent on temperature and blend ratio. 相似文献
3.
Blends of polyvinyl chloride/epoxidized natural rubber (PVC/ENR) blends were studied. Their rheological properties were studied with a Brabrender Plasticorder. It was found that the rheological properties of any PVC/ENR blends are governed by their blending conditions. To ensure homogenous PVC/ENR blends, adequate and suitable blending conditions must be utilized. PVC thermoplastics phases enhances rigidity while ENR rubbery phases imparts flexibility and processability to the blends. With premixing, Ba/Cd/Zn-based PVC stabilizer is effective in stabilizing the PVC/ENR blends. Their properties are further enhanced by the addition of curatives. 相似文献
4.
An attempt to resolve the difficulties normally faced in preparing PVC-dominant PVC/ENR blends with the Brabender plasticorder is discussed. As expected, it was found that the mechanical properties of PVC/ENR blends are greatly influenced by the mixing parameters, which are further reinforced with evidence from both dynamic mechanical analysis (DMA) and morphological studies. Both techniques showed the attainment of compatible 50/50/PVC/ENR blends, the former a single glass transition temperature (Tg) and the latter a single-phase system, albeit their inherent properties are dependent on the blending parameters. By utilizing the correlation between mixing temperature and rotor speed derived, good PVC/ENR blends can be easily procured. © 1993 John Wiley & Sons, Inc. 相似文献
5.
Miscible blends from plasticized poly(vinyl chloride), and epoxidized natural rubber having 50 mol% epoxidation level were prepared in a Brabender Plasticorder by the melt-mixing technique. Changes in Brabender torque and temperature, density, dynamic mechanical properties, and differential scanning calorimetry of the samples were examined as a function of blend composition. The plasticized poly(vinyl chloride)/epoxidized natural rubber blends behaved as a compatible system at all composition ranges as evident from their single glass-rubber transition temperature (Tg) obtained from dynamic mechanical analysis as well as from differential scanning calorimetry. Profound changes in the nature of the glass-rubber transition were noted with respect to blend composition. The Tg-width values of blends lie between those of plasticized poly(vinyl chloride) and epoxidized natural rubber. 相似文献
6.
Electron‐beam initiated crosslinking of a poly(vinyl chloride)/epoxidized natural rubber blend (PVC/ENR), which contained trimethylolpropane triacrylate (TMPTA), was carried out over a range of irradiation doses (20–200 kGy) and concentrations of TMPTA (1–5 phr). The gelation dose was determined by a method proposed by Charlesby. It was evident from the gelation dose, resilience, hysteresis, glass‐transition temperature (Tg), IR spectroscopy, and scanning electron microscopy studies that the miscible PVC/ENR blend underwent crosslinking by electron‐beam irradiation. The acceleration of crosslinking by the TMPTA was further confirmed in this study. Agreement of the results with a theory relating the Tg with the distance between crosslinks provided further evidence of irradiation‐induced crosslinking. The possible mechanism of crosslinking induced by the irradiation between PVC and ENR is also proposed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1914–1925, 2001 相似文献
7.
Marvin H. Lehr 《Polymer Engineering and Science》1986,26(13):947-956
The properties of poly(vinyl chlorlde)/ehlorinated poly(vinyl chloride) (61.6 percent C1) blends, prepared by melt and solution blending, were measured by various tests. Based on the chlorinated poly(vinyl chloride) (CPVC) composition, percent chlorine, and mole percent CC12 groups, these blends were expected to show intermediate properties between miscible and immiscible systems. Indicative of miscible behavior were the single glass transition temperatures over the entire composition range for both melt and solution blended mixtures. A single phase was also indicated by transmission electron microscopy. However, the yield stress showed a minimum value less than either of the pure components in the 50 to 75 percent CPVC range, which is characteristic of two-phased systems. Specific volume, glass transition temperature, and heat distortion temperature were linear with binary composition. The storage modulus showed a small maximum, suggesting a weak interaction between the two miscible polymers. Heats of melting for the residual PVC crystallinity were also less than expected from linear additivity. At 160°C and 210°C, the logarithm of the complex viscosity was essentially linear with volume fraction of CPVC, except for a very slight decrease in the 50 to 75 percent CPVC range, which may have been a result of lower crystallinity. At 140°C, the complex viscosity of the CPVC was less than that of PVC owing to the higher crystallinity of the latter. The viscosities were similar at 160°C, but at 210°C, where most of the crystallites had melted, the complex viscosity of the CPVC was higher because of its higher glass transition temperature. 相似文献
8.
Dynamically vulcanized poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) thermoplastic elastomers (TPEs) were prepared with a Brabender plasticorder coupled with a mixing attachment by melt mixing. The blends were prepared at 150°C at a rotor speed of 50 rpm. Curatives concentration was steadily increased from 0 to 1 phr in order to study the vulcanization effect on the plasticized blend. The effectiveness of the dynamic vulcanization was indicated by the Brabender plastograms. The properties investigated include mass swell, tensile strength, elongation at break, modulus at 100% elongation (M100), tear strength, and hardness. The PVC/ENR samples were exposed to two types of environments, namely, air and oil under otherwise identical conditions. The effect of oil and thermooxidative aging on the mechanical properties were characterized at room temperature and 100°C. It was found that at ambient temperature the samples immersed in oil possessed similar properties to those that were exposed to air. Significant enhancement in mechanical properties were observed for both environments at 100°C. This has been attributed to the increase in crosslink density which was manifested by a steady reduction in percent mass swell with increased sulfur loading. The excellent mechanical behavior of the PVC/ENR TPEs even after immersing the samples in oil at 100°C has provided a good indication of the oil resistance of the materials. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1357–1366, 1998 相似文献
9.
Electron‐beam initiated crosslinking of poly(vinyl chloride)/epoxidized natural rubber blends, which contained trimethylolpropane triacrylate (TMPTA), was carried out over a range of irradiation doses (20–200 kGy) and concentrations of TMPTA (1–5 phr). The gel content increased with the irradiation dose and the TMPTA level, although the increase was marginal at higher doses and higher TMPTA levels. Blends containing 3–4 phr TMPTA achieved optimum crosslinking, which in effect caused the maximum tensile strength (TS) at a dose of 70 kGy. A further addition of TMPTA caused a decline in the TS above 40 kGy that was due to embrittlement, which is a consequence of excessive crosslinking and the breakdown of the network structure. The possible formation of a more open network as a result of the breakdown of the network structure was further confirmed by the modulus results. Dynamic mechanical analysis (tan δ curve) and scanning electron microscopy studies on samples irradiated at 0 and 200 kGy were undertaken in order to gain further evidence on the irradiation‐induced crosslinking. The plasticizing effect of TMPTA prior to irradiation and the formation of microgels upon irradiation were also discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1926–1935, 2001 相似文献
10.
Miscibility in poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends was further investigated by means of dynamic mechanical analysis. The single glass transition temperature shown by the blends supported earlier observations of miscibility Furthermore, observed synergism in storage modulus has again reaffirmed the miscibility of these blends. A critical examination of the damping peaks at various compositions again revealed the microheterogeneous nature of the blends. Some theories relating glass transition temperature and modulus with miscibility were also used to examine miscibility. Agreement of the results with theories proposed by Gordon—Taylor and Kleiner has provided a further insight into the miscible nature of PVC/ENR blends. 相似文献
11.
Miscibility in poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends was studied by examining evidence from tensile, impact, and physical properties. The observation of synergism in tensile strength, percent elongation at break, hardness, and relative density has reaffirmed PVC/ENR blends as miscible systems. Studies of impact properties, however, revealed that the blends are microheterogeneous in nature. This could be attributed to the large sizes of polymer molecules involved and the microgel content of ENR-50. Results from Fourier transform infrared spectroscopy (FTIR) revealed that hydrogen bonding is extensively involved in PVC/ENR systems. This evidence unveiled the exact nature of the specific interactions responsible for miscibility and hence the enhanced mechanical properties of PVC/ENR blends. 相似文献
12.
The effect of di-2-ethylhexyl phthalate (DOP) plasticizer on the degradation behaviour of 50/50 poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blend was studied by long-term exposure to ambient conditions (27–30°C) in the laboratory. While the unplasticized blend showed obvious changes in physical properties such as hardening, loss of elasticity and embrittlement, the plasticized blend retained its properties. Thermo-oxidative ageing studies were carried out by evaluating the mechanical properties before and after ageing in an air oven at 80°C for 168 h. The relatively rapid degradation of PVC/ENR blend has been attributed to the high concentration of epoxy groups and the occurrence of ring-opening reactions to form ether crosslinks. It was found that the plasticizer confers adequate stabilization upon the addition of a certain threshold amount. The optimum amount of plasticizer required to adequately stabilize the blend is 20 phr. Above this there is a tendency for plasticizer migration to occur. The use of an antioxidant in conjunction with the plasticizer further stabilizes the blend. The general trend is of decrease in mechanical and physical properties with increase in DOP concentration. In addition, ease of processing also increases as indicated by the torque maxima and minima obtained from the Brabender plastograms. 相似文献
13.
Chantara Thevy Ratnam 《Polymer International》2001,50(10):1132-1137
The irradiation crosslinking of 50/50 poly(vinyl chloride)/epoxidized natural rubber blend was investigated in the presence of 1–5 parts per hundred resin (phr) tribasic lead sulfate (TBLS) with blends prepared at various mixing temperatures. The blends were irradiated using a 3.0 MeV electron accelerator at 0, 100 and 200 kGy irradiation doses. Changes in tensile strength, elongation at break and stress‐strain curves of the blends with the increase TBLS content and blending temperatures were observed before and after irradiation. The results on the tensile properties revealed the inhibition of the irradiation‐induced crosslinking by the TBLS although it stabilizes the blend against thermal and irradiation‐induced degradation. The Fourier transform infrared spectroscopy studies further confirmed these observations. Control on the thermal degradation of the blend during blending found to be crucial in achieving maximum enhancement in blend properties upon irradiation. Evidence from dynamic mechanical analysis was also used to support this contention. Addition of 2 phr TBLS and blending at 150 °C found to be adequate in order to achieve the best enhancement in blend properties through irradiation‐induced crosslinking. © 2001 Society of Chemical Industry 相似文献
14.
The effectiveness of epoxidized styrene-butadiene-styrene (ESBS) block copolymer as a polymeric compatibilizer for the incompatible polystyrene/poly(vinyl chloride) (PS/PVC) blend was investigated. ESBS at two epoxidation levels (34 and 49 mol% oxirane units) was used and the study covered mainly compositions with up to 30 wt% PS content in the ternary blends. The results support the view that ESBS can serve as a compatibilizer at these levels of epoxidation and when added in amounts in excess of 5 wt%. Ternary blends may also have good elongation properties due to the thermoplastic elastomer character of ESBS. 相似文献
15.
The effects of an epoxidized plasticizer on the mechanical properties and thermo-oxidative ageing behaviour of poly(vinyl chloride)/epoxidized natural rubber thermoplastic elastomers (TPEs) were investigated. Aged and unaged blends were characterized by FTIR, tensile properties, tear strength, hardness and dynamic mechanical analysis (DMA). The properties of the epoxidized soya oil (ESO) plasticized TPEs were compared with those of the di-2-ethylhexylphthalate (DOP) plasticized counterparts. The presence of epoxide groups in ESO has been shown to produce two conflicting effects. On the one hand, the presence of excessive epoxide groups has resulted in poor ageing behaviour. On the other hand, it has resulted in a good interaction and compatibility with PVC/ENR. It was found that the tensile strength of the ESO plasticized blends were comparable with the DOP plasticized ones, but the elongation at break (EB) of the ESO blends fell short of that of the DOP blends. Also the retention of both tensile properties for the ESO blends was poorer than for DOP blends. Hardening and embrittlement also occurred in the ESO blends. Despite these weaknesses, ESO could be an ideal plasticizer for the PVC/ENR system as indicated by plasticizer permanence and the greater efficiency of plasticization. © 1998 SCI. 相似文献
16.
Epoxidized natural rubber is a recently commercialized modified form of natural rubber. This paper is part of our continuing effort to study the responses of this new material to melt mixing and other shaping processes. The Shimadzu capillary rheometer was used to evaluate the composition dependence of miscibility of polyvinyl chloride/epoxidized natural rubber blends (PVC/ENR blends). The rheometer was also used to evaluate the effect of compounding parameters on the rheological properties of the blends. The results confirmed PVC/ENR blends as miscible systems that show a synergism in apparent shear viscosity highlighted by the positive deviation from the logarithmic additivity rule. These results based on capillary rheometry are also in very good agreement with our earlier attempt to predict optimum mixing from torque rheometry by using the Brabender Plastogram as an indicator. 相似文献
17.
N. Yamada S. Shoji H. Sasaki A. Nagatani K. Yamaguchi S. Kohjiya Azanam S. Hashim 《应用聚合物科学杂志》1999,71(6):855-863
A high performance vibration absorber requires a high loss factor behavior over a wide temperature and frequency range. An investigation was carried out to prepare such materials based on poly(vinyl chloride), chlorinated polyethylene, and epoxidized natural rubber ternary blends. The loss factor and damping behavior of several compositions were measured using a viscoelastic spectrometer and a polymer‐laminated steel cantilever‐beam damping device. Suitable compositions were found to give good mechanical properties and high loss factor over a wide temperature and frequency range. It was also observed that flake‐type fillers improve the damping behavior. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 855–863, 1999 相似文献
18.
Shahin Akhlaghi Alireza Sharif Mohammadreza Kalaee Mohammadreza Manafi 《应用聚合物科学杂志》2011,121(6):3252-3261
Various poly(vinyl chloride) (PVC)/feather keratin (FK) blends were prepared via a solution blending method in the presence of N,N‐dimethylformamide as a solvent. The miscibility of the blends was studied with different analytical methods, such as dilute solution viscometry, differential scanning calorimetry, refractometry, and atomic force microscopy. According to the results obtained from these techniques, it was concluded that the PVC/FK blend was miscible in all the studied compositions. Specific interactions between carbonyl groups of the FK structure and hydrogen from the chlorine‐containing carbon of the PVC were found to be responsible for the observed miscibility on the basis of Fourier transform infrared spectroscopy. Furthermore, increasing the FK content in the blends resulted in their miscibility enhancement. The thermal stability of the samples, as an important characteristic of biobased polymer blends, was finally examined in terms of their FK weight percentage and application temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
19.
用环氧树脂(EP)增强聚氯乙烯/丁腈橡胶(PVC/NBR)共混胶,研究了EP用量对共混胶力学性能的影响,考察了EP对炭黑增强PVC/NBR共混胶力学性能的影响,并用扫描电子显微镜分析了共混胶的微观形貌。结果表明,用EP增强PVC/NBR共混胶,胶料的力学性能提高,且老化后性能变化不明显。在EP用量为18份左右时共混胶的综合性能最佳。EP对炭黑增强PVC/NBR共混胶力学性能的改善有一定作用。EP在PVC/NBR共混胶中原位聚合生成了直径约为200 nm的纤维。 相似文献
20.
Marvin H. Lehr 《Polymer Engineering and Science》1985,25(17):1056-1068
Blends of poly(vinyl chloride) with chlorinated poly(vinyl chloride) (PVC), and blends of different chlorinated poly(vinyl chlorides) (CPVC) provide an opportunity to examine systematically the effect that small changes in chemical structure have on polymer-polymer miscibility. Phase diagrams of PVC/CPVC blends have been determined for CPVC's containing 62 to 38 percent chlorine. The characteristics of binary blends of CPVC's of different chlorine contents have also been examined using differential calorimetry (DSC) and transmission electron microscopy. Their mutual solubility has been found to be very sensitive to their differences in mole percent CCl2 groups and degree of chlorination. In metastable binary blends of CPVC's possessing single glass transition temperatures (Tg) the rate of phase separation, as followed by DSC, was found to be relatively slow at temperatures 45 to 65° above the Tg of the blend. 相似文献