首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of the finite element method stress intensity factors were calculated for partly circumferential surface cracks at the outer wall of a pipe. The crack shape considered can be described as curved rectangular shape. The cracks considered have crack depths between 20 and 80 percent of the wall thickness of the pipe and crack lengths (defined by the angle of circumference φ) between φ = 10° and φ = 60°. The pipe is loaded by a constant axial tensile stress σ0 (equal to 136 Nmm?2 in the numerial calculations), and the wall thickness to inner radius ratio of the pipe was chosen to 0.1. A wall thickness of 20 mm was used for the numerical calculations.  相似文献   

2.
ABSTRACT Three-dimensional finite element analyses have been conducted to calculate the stress intensity factors for deep semi-elliptical cracks in flat plates. The stress intensity factors are presented for the deepest and surface points on semi-elliptic cracks with a/t -values of 0.9 and 0.95 and aspect ratios ( a/c ) from 0.05 to 2. Uniform, linear, parabolic or cubic stress distributions were applied to the crack face. The results for uniform and linear stress distributions were combined with corresponding results for surface cracks with a/t = 0.6 and 0.8 to derive weight functions over the range 0.05 ≤  a/c  ≤ 2.0 and 0.6 ≤  a/t  ≤ 0.95. The weight functions were then verified against finite element data for parabolic or cubic stress distributions. Excellent agreements are achieved for both the deepest and surface points. The present results complement stress intensity factors and weight functions for surface cracks in finite thickness plate developed previously.  相似文献   

3.
Abstract— A Fourier series approach is proposed to calculate stress intensity factors using weight functions for semi-elliptical surface cracks in flat plates subjected to two-dimensional stress distributions. The weight functions were derived from reference stress intensity factors obtained by three-dimensional finite element analyses. The close form weight functions derived are suitable for the calculation of stress intensity factors for semi-elliptical surface cracks in flat plates under two-dimensional stress distributions with the crack aspect ratio in the range of 0.1 ≤ a/c ≤ 1 and relative depth in the range of 0 ≤ a/t ≤ 0.8. Solutions were verified using several two-dimensional non-linear stress distributions; the maximum difference being 6%.  相似文献   

4.
By means of the weight functions method stress intensity factors were calculated for axial semi-elliptical surface cracks in a pipe with cladding. The component is loaded by a thermoshock. Starting from a stress-free state the inner surface of the cladding is suddenly cooled down. The time-dependent temperature and hoop stress distributions of the uncracked component were calculated for the loading case considered. Numerical values of the stress intensity factors at the deepest point and at the surface points of the crack were evaluated at different time steps for a wide range of crack depths and crack lengths.  相似文献   

5.
This paper describes the generation of parametric equations for weld toe stress intensity factors. The methodology employed used a two-dimensional finite element analysis to evaluate the ‘crack opening’ stress distribution in the uncracked plane of T-butt geometries. This was then used as input into a dedicated weight function solution for the determination of stress intensity factors. The final parametric equations describe the stress intensity factor distributions for tension and bending as a function of plate thickness, weld attachment width, weld angle, weld root radius, crack length and crack shape. The equations are compared and validated against a wide spectrum of published values and appear by comparison accurate and wide ranging. The validation exercise uncovered situations where present design guidance is unconservative.  相似文献   

6.
Abstract— Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configurations and provide stress distributions in the region where a crack is likely to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range of geometrical parameters. The significance of using 3-D uncracked stress distributions is studied. Comparisons are made with solutions available in the literature.  相似文献   

7.
A single edge cracked geometry with clamped ends is well suited for fracture toughness and fatigue crack growth testing of composites and thin materials. Analysis of fiber bridging phenomenon in the composites and determination of stress intensity factors due to non-uniform stress distributions such as residual and thermal stresses generally require the use of a weight function. This paper describes the development and verification of a weight function for the single edge cracked geometry with clamped ends. Finite element analyses were conducted to determine the stress intensity factors (K) and crack opening displacements (COD) due to different types of stress distributions. The weight function was developed using the K and COD solution for a constant stress distribution. K and COD predicted using this weight function correlated well with the finite element results for non-uniform crack surface stress distributions.  相似文献   

8.
The stress intensity factor at the deepest point of a semi-elliptical surface crack is calculated for stress gradients in direction of depth. The method is based on weight functions. The crack opening displacement for the reference problem is calculated with a method proposed by Petroski and Achenbach. The results are compared to finite element solutions given in the literature. As an example, the stress intensity factor is calculated for a crack in a thermally shocked pipe.  相似文献   

9.
In this paper a general weight function was derived to evaluate the thermal stress intensity factors of a circumferential crack in cylinders. The weight function derived is valid for a wide range of thin- to thick-walled cylinders and relative crack depth. Closed-form stress intensity factor based on the weight function method was derived as a function of the Biot number and relative depth and various inner-to-outer radius ratios of cylinders. The accuracy of the analysis has been examined using the finite element method results and were compared to existing solutions for uniform loading in the literature for special geometries, indicating an excellent agreement.  相似文献   

10.
This paper presents stress intensity factor (SIF) solutions for edge cracks emanating from semicircular notches using the composition of SIF weight functions. The method isolates and combines the geometrical influences defined by constitutive SIF weight functions to yield SIFs for semicircular notches in finite thickness bodies. Finite element analysis was employed to obtain the required stress distributions and to generate reference constitutive SIFs. Problems encountered with curve fitting high gradient stress distributions were addressed and a robust mathematical solution for these was formulated. The new SIF solutions were verified by comparison with published solutions showing a high degree of accuracy and reliability. The composition model was demonstrated to allow rapid generation of SIFs for mode I cracks in complex geometries where the relevant simple constitutive solutions are available. These new solutions expressed as SIF weight functions allow interpolation between the geometrical parameters for which they are valid and also to include the effect of complex stress distributions such as those due to residual stresses.  相似文献   

11.
In the present study, weight functions (WFs) of a subsurface crack were derived by proposing a new general form for approximate one‐dimensional WF. The WFs coefficients were considered as a function of crack length to depth ratio and were obtained using reference stress intensity factors (SIFs) of 16 cracks under uniform, linear, and parabolic normal and shearing loadings. The verification was performed by comparison of the straight and coupled SIFs calculated by WF and finite element modelling under some complicated loadings. In conclusion, the WFs can be simply and effectively employed for evaluating the cracks under any complex stress distributions.  相似文献   

12.
A single edge cracked geometry with clamped ends is well suited for fracture toughness and fatigue crack growth testing of composites and thin materials. Stress intensity factors may be determined by the weight function method. A weight function for the single edge cracked geometry with clamped ends is developed and verified in this paper. It is based on analytical forms for the reference stress intensity factor and crack mouth opening displacement. The analytical forms are shown to be valid, by comparison with finite element results, over a wide range of crack depths and plate aspect ratios. Use of the analytical form enables the weight function to be calculated for any plate aspect ratio without the need for preliminary finite element analysis. Stress intensity factors and crack mouth opening displacements, predicted using this weight function, correlated well with finite element results for non-uniform crack surface stress distributions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
A crankshaft is often designed with a small fillet radius. The crankshaft fillet rolling process is one of the commonly adopted methods in engineering to improve fatigue life of the crankshaft. Compressive residual stresses on and below the fillet radius surface are induced through the fillet rolling operation. Consequently, fatigue life of the crankshaft is improved. An analytical technique is used to optimize the crankshaft rolling process to comply with a crankshaft design criterion for durability. A nonlinear finite element analysis is implemented to approximate the stress distributions induced by the crankshaft rolling process, and a crack modeling technique is developed to calculate the equivalent stress intensity factor ranges based on the combined residual and operational stress distributions along various crack growth planes. The threshold equivalent stress intensity factor range is obtained from previous staircase testing on crankshaft sections. The durability design criterion is met if the threshold equivalent stress intensity factor range exceeds the largest calculated equivalent stress intensity factor range. Due to the complexity of the modeling techniques in simulating the rolling process and calculating the equivalent stress intensity factors, a meta-model is generated based on the uniform design method for the choice of sample points and the quadratic polynomial fitting technique for a response surface generation. In the meta-model optimization process, rolling force, rolling angle, and fillet radius are the control factors, while the variations of the threshold equivalent stress intensity factor range, rolling force, rolling angle, and fillet radius are considered as the noise factors. By using the Hooke–Jeeves direct pattern search method and the Monte Carlo simulation technique, the optimal design is obtained for the highest reliability and the smallest coefficient of variation (COV).  相似文献   

14.
Weight functions were derived for the deepest point and surface point of a semi-elliptical surface crack in T-plate joints with weld angles between 0 and 45°. These weight functions were derived from reference stress intensity factor solutions obtained from three-dimensional finite element calculations, and verified using stress intensity factors for different non-linear stress fields and for far-field tension and bending cases. The differences between the weight function predictions and the finite element data were less than 10%. They are suitable for semi-elliptical surface cracks with aspect ratios in the range 0.05 ≤ a/c ≤ 1, together with relative depths 0 ≤ a/t ≤ 0.6 and weld angles 0 ≤ φ ≤ 45°.  相似文献   

15.
In this paper the method of weight functions is employed to calculate the stress intensity factors for an internal circumferential crack in a thick‐walled cylinder. The pressurized cylinder is also subjected to convection cooling on the inner surface. Finite element method is used to determine an accurate weight function for the crack and a closed‐form thermal stress intensity factor with the aid of the weight function method is extracted. The influence of crack parameter and the heat transfer coefficient on the stress intensity factors are determined. Comparison of the results in the special cases with those cited in the literature and the finite element data shows that the results are in very good agreement.  相似文献   

16.
This paper presents a study on the application of the weight function and finite element methods to evaluate residual stress intensity factors in welded test samples. Three specimen geometries and various residual stress profiles were studied. Comparisons of the two different methods were made in terms of the accuracy, easiness to use, conditions and limitations. Calculated residual stress intensity factors by the two different methods are in general in good agreement for all the configurations studied. Computational issues involved in executing these methods are discussed. Some practical issues are also addressed, e.g. treatment of incomplete or limited residual stress measurements, influence of transverse residual stresses, and modelling residual stress in short-length specimens. The finite element method is validated by well-established weight functions and thus can be applied to complex geometries following the procedures recommended in this paper.  相似文献   

17.
Stress intensity factors were calculated for partly circumferential surface cracks at the outside of a pipe. The pipe is loaded by internal pressure and by thermal stresses. The weight functions method is used to calculate averaged weighted stress intensity factors at the deepest point and at the surface points of the crack. The evaluation of temperatures and stresses in the pipe and the application of the weight functions method are described. Numerical results are given for an application to steam generator tubes.  相似文献   

18.
A remarkably simple and accurate one-step application of the finite element (FE) method is suggested as a means for the engineer's routine determination of stress intensity factors in linear fracture mechanics for complicated non-symmetric geometries with three-dimensional states of stress and curved crack fronts. The vector-valued influence functions (Green functions) used here are a special kind of weight functions. Mode separation is inherent to the present procedure. Numerical examples demonstrate the versatility of the method. Accuracies within 1% are easily achieved. Detailed guidance to the design of the FE mesh at the crack front is given. Any standard FE code can be used, without requirements for special finite or boundary elements. In retrospect, the present method can be seen as a rather trivial calculation technique which has been made feasible and attractive by the capabilities of today's computers and softwares.  相似文献   

19.
The Wu‐Carlsson displacement‐based weight function method is extended to obtain the mode I and mode II weight functions for the edge‐ and centre‐cracked discs. Compared with Fett's direct adjustment weight functions for the edge‐cracked discs, the present weight functions are more accurate and are applicable for a wider range of crack lengths. Using the present weight functions, extensive and highly accurate mixed‐mode stress intensity factors are obtained for the cracked discs subjected to diametrically compressive forces. Assuming perfect contact and using Coulomb friction law and the present weight functions, the mode II stress intensity factors for the cracked discs with consideration of friction are obtained and widely compared with the corresponding results from finite element analyses.  相似文献   

20.
The dual boundary element method coupled with the weight function technique is developed for the analysis of three-dimensional elastostatic fracture mechanics mixed-mode problems. The weight functions used to calculate the stress intensity factors are defined by the derivatives of traction and displacement for a reference problem. A knowledge of the weight functions allows the stress intensity factors for any loading on the boundary to be calculated by means of a simple boundary integration without singularities. Values of mixed-mode stress intensity factors are presented for an edge crack in a rectangular bar and a slant circular crack embedded in a cylindrical bar, for both uniform tensile and pure bending loads applied to the ends of the bars. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号