首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2020,46(7):8543-8552
In order to evaluate the application prospects of NdYbZr2O7 as a novel TBC material, NdYbZr2O7 ceramic was synthesized via a solid-state reaction sintering method, and its hot corrosion behavior exposed to V2O5 and Na2SO4 + V2O5 molten salts at 900 °C, 1000 °C, and 1100 °C was comparatively investigated. For the V2O5 salt, the primary corrosion products were granular (Nd,Yb)VO4 as well as cube-like m-ZrO2. The corrosion layer consisted of two distinct layers, one of which was Zr-rich layer and another was V-rich layer. In the case of Na2SO4 + V2O5, NaVO3, as an intermediate product, played an important role in dissolving the NdYbZr2O7 ceramic. Herein, the (Nd,Yb)VO4 exhibited a rod/plate-like morphology, which could be attributed to the synergistic effect of low driving force and low nucleation rate. Since the molten salt infiltration rate was superior to the pore filling rate throughout the hot corrosion, the thickness of corrosion layer increased with the rise of temperature. The hot corrosion mechanisms of NdYbZr2O7 ceramic in various molten salts were discussed based on the phase diagram, Lewis acid-base rule and chemical thermodynamics. On this basis, the NdYbZr2O7 coating was prepared by atmospheric plasma spray (APS) and it exhibits a higher corrosion resistance compared to YSZ coating.  相似文献   

2.
The hot corrosion behaviors of Sr(Y0.05Yb0.05Zr0.9)O2.95 (SYYZ) ceramic were investigated in Na2SO4, V2O5, and Na2SO4 + V2O5 salts mixture, respectively. Na2SO4 did not react with SYYZ ceramic at 900, 950 and 1000 °C. m-ZrO2, YVO4 and YbVO4 were the main corrosion products on the SYYZ ceramic surface in V2O5 at 800 and 900 °C, whereas Sr3V2O8 and t-ZrO2 appeared at 1000 °C. In Na2SO4 + V2O5 salts mixture, the corrosion products were Sr3V2O8 and t-ZrO2 at 800 and 900 °C on the SYYZ ceramic surface, however, a new phase of SrZrO3 developed at 1000 °C. The phase transformation and chemical interaction are the primary corrosion mechanisms for degradation of SYYZ ceramic.  相似文献   

3.
《Ceramics International》2017,43(10):7797-7803
Nanostructured GdPO4 coatings, designed as the outer layer of double-ceramic-layer thermal barrier coatings (DCL-TBCs), were produced by air plasma spraying (APS). The coatings have close chemical composition to that of the agglomerated particles used for thermal spray. Nanozones with porous structure are embedded in the coating microstructure, having a percentage of ~30%. Hot corrosion tests of the coatings were carried out in V2O5 and Na2SO4+V2O5 salts at 900 °C for 4 h. Results indicate that dense reaction layers, consisting of GdVO4 and Gd4(P2O7)3, form on the coating surfaces, which could suppress further penetration of the molten salts. In the V2O5 molten salt, the reaction layer is thicker and less molten salt trace could be found beneath the layer.  相似文献   

4.
《Ceramics International》2016,42(12):13849-13854
Sm2Zr2O7 and (Sm0.5Sc0.5)2Zr2O7 ceramics were fabricated by a chemical co-precipitation and calcination method, and their hot corrosion behaviors in Na2SO4+V2O5 molten salt were investigated. Hot corrosion tests were carried at 700 °C, 800 °C and 900 °C for 4 h, and corroded surfaces were investigated using X-ray diffractometer and scanning electron microscopy. The corrosion products of Sm2Zr2O7 ceramics were composed of SmVO4 and monoclinic-ZrO2, while those of (Sm0.5Sc0.5)2Zr2O7 ceramic consisted of SmVO4 and Zr5Sc2O13. Considering the fact that Zr5Sc2O13 is more desirable than monoclinic-ZrO2 for thermal barrier coating applications, (Sm0.5Sc0.5)2Zr2O7 showed better corrosion resistance to Na2SO4+V2O5 salt than Sm2Zr2O7. The hot corrosion mechanisms of Sm2Zr2O7 and (Sm0.5Sc0.5)2Zr2O7 in Na2SO4+ V2O5 salt were discussed in detail.  相似文献   

5.
Six rare-earth tantalate high-entropy ceramics of (5RE.2)Ta3O9 (RE represents any five elements selected from La, Ce, Nd, Sm, Eu, Gd) were designed and prepared by spark plasma sintering process at 1400°C in this study. The (5RE.2)Ta3O9 ceramics only consist of a single-phase solid solution with perovskite structure. Their relative densities are all above 90%, and the average grain size is in the range of 1.47–2.92 μm. The thermal conductivity of (5RE.2)Ta3O9 ceramics is in 2.24–1.90 W m−1 K−1 (25°C–500°C), which is much lower than that of yttria-stabilized zirconia. In six samples, (La.2Nd.2Sm.2Gd.2Eu.2)Ta3O9 possesses a thermal conductivity of 1.90 W m−1 K−1, a thermal expansion coefficient of 3.47 × 10−6 K−1 (500°C), a Vickers hardness of about 7.33 GPa, and a fracture toughness of about 5.20 MPa m1/2, which are suitable for its application as thermal barrier coatings.  相似文献   

6.
《Ceramics International》2022,48(8):11124-11133
A series of rare-earth-tantalate high-entropy ceramics ((5RE0.2)Ta3O9, where RE = five elements chosen from La, Ce, Nd, Sm, Eu and Gd) were prepared by conventional sintering in air at 1500 °C for 10 h. The (5RE0.2)Ta3O9 high-entropy ceramics exhibit an orthogonal structure and sluggish grain growth. No phase transition occurs in the test temperature of 25–1200 °C. The thermal conductivities of all (5RE0.2)Ta3O9 ceramics are in the range of 1.14–1.98 W m?1 K?1 at a test temperature of 25–500 °C, approximately half of that of YSZ. The sample of (Gd0.2Ce0.2Nd0.2Sm0.2Eu0.2)Ta3O9 exhibits a low glass-like thermal conductivity with a value of 1.14 W m?1 K?1 at 25 °C. The thermal expansion coefficient of (5RE0.2)Ta3O9 ceramics ranges from 5.6 × 10?6 to 7.8 × 10?6 K?1 at 25–800 °C, and their fracture toughness is high (3.09–6.78 MPa·m1/2). The results above show that (5RE0.2)Ta3O9 ceramics could be a promising candidate for thermal barrier coatings.  相似文献   

7.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   

8.
Anti-spinel oxide SrY2O4 has attracted extensive attention as a promising host lattice due to its outstanding high-temperature structural stability and large thermal expansion coefficient (TEC). However, the overhigh thermal conductivity limits its application in the field of thermal barrier coatings. To address this issue, a novel high-entropy Sr(Y0.2Sm0.2Gd0.2Dy0.2Yb0.2)2O4 ceramic was designed and synthesized for the first time via the solid-state method. It is found that the thermal conductivity of Sr(Y0.2Sm0.2Gd0.2Dy0.2Yb0.2)2O4 is reduced to 1.61 W·m−1·K−1, 53 % lower than that of SrY2O4 (3.44 W·m−1·K−1) at 1500 °C. Furthermore, reasonable TEC (11.53 ×10−6 K−1, 25 °C ∼ 1500 °C), excellent phase stability, and improved fracture toughness (1.92 ± 0.04 MPa·m1/2) remained for the high-entropy Sr(Y0.2Sm0.2Gd0.2Dy0.2Yb0.2)2O4 ceramic, making it a promising material for next-generation thermal barrier coatings.  相似文献   

9.
Samarium strontium aluminate (Sm2SrAl2O7-SSA) and Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) were developed on NiCrAlY bond coated Inconel 718 superalloy substrate using air plasma spray process. The hot corrosion study was conducted in simulated gas turbine environments (molten mixtures of 50?wt% Na2SO4 + 50?wt% V2O5 and 90?wt% Na2SO4 + 5?wt% V2O5 + 5?wt% NaCl) for two different temperatures of 700 and 900?°C. A developed SSA TBCs showed about 8% and 22% lower lifetime at 700 and 900?°C, respectively than YSZ TBCs in 50?wt% Na2SO4 +?50?wt% V2O5 (vanadate). The hot corrosion life of SSA TBCs being found about 13% and 39% lower than YSZ TBCs in 90?wt% Na2SO4 +?5?wt% V2O5 +?5?wt% NaCl (chloride) at 700 and 900?°C, respectively. X-ray diffraction results showed the formation of SmVO4, SrV2O6, and SrSO4 as a major hot corrosion product in 50?wt% Na2SO4 +?50?wt% V2O5 and 90?wt% Na2SO4 +?5?wt% V2O5 +?5?wt% NaCl environments respectively for SSA TBCs. Similarly, YSZ TBCs also showed YVO4 as hot corrosion product in vanadate and chloride environments. Both the TBCs suffer a more severe hot corrosion attack in chloride environment at 900?°C. The leaching of Sr2+ and Y3+ ions from SSA and YSZ respectively play a vital role in the destabilization of coating in vanadate and chloride environments at 700 and 900?°C. In both SSA and YSZ TBCs, the leaching of ion has significantly low influence as compared to attack by chloride ions at the bond coat-top coat interface in the presence of chloride environment. The hot corrosion resistance of SSA TBCs was improved three times higher in the presence of MgO and NiO inhibitor in vanadate environment at 900?°C mainly due to the formation of a stable Ni3V2O8 phase at the surface.  相似文献   

10.
《Ceramics International》2022,48(5):6372-6384
Sm2O3-HfO2 series ceramics were synthesized at high temperature using the solid-state reaction. The phase stability, thermo-physical and infrared emission properties of Sm2Hf2O7 (SHO) and Sm2Hf2O7-44.83 wt%HfO2 (25S/H) composite ceramics were comparatively investigated. Furthermore, their calcium magnesium aluminosilicate (CMAS) corrosion was conducted at 1250°C for different times. The results reveal that both SHO and 25S/H ceramics have excellent phase stability at 1600°C as well as excellent sintering resistance. SHO still exhibits slightly lower thermal conductivity and lower hardness and Young's modulus, higher thermal expansion coefficient (CTE) and fracture toughness as well as higher infrared emittance (0.899 at 800°C) than 25S/H composite with the excessive HfO2 inside. Both SHO and 25S/H ceramics react with CMAS to form a relatively compact reaction layer, which can effectively prevent the penetration of CMAS. These results preliminarily indicate that SHO ceramic can be proposed as an alternative material of the traditional YSZ for high-temperature thermal protective applications thanks to its compatible performance of low thermal conductivity and high infrared radiation, etc.  相似文献   

11.
《Ceramics International》2020,46(13):20652-20663
Rare-earth doped zirconates are promising candidate materials for high-performance thermal barrier coatings (TBCs). The phase and microstructure stability is an important issue for the materials that must be clarified, which is related to the long-term stable work of TBCs at high temperatures. In this work, La2(Zr0.75Ce0.25)2O7 (LCZ) ceramic coatings prepared by atmospheric plasma spraying present a metastable fluorite phase, which can transform into stable pyrochlore under high-temperature annealing. The detailed structure evolution of the ceramic coatings is characterized systematically by SEM, XRD and Raman. The associated thermal properties of LCZ ceramics were also reported. Results show that LCZ ceramic has an ultralow thermal conductivity (0.65 W/m·K, 1200 °C), which is only 1/3 of that of yttria-stabilized zirconia (YSZ). The thermal expansion coefficients of LCZ ceramic increase from 9.68 × 10-6 K-1 to 10.7 × 10-6 K-1 (300 - 1500 °C), which are relatively larger than those of La2Zr2O7. Besides, Long-term sintering demonstrates that LCZ ceramic coating has preferable sintering resistance at 1500 °C, which is desirable for TBC applications.  相似文献   

12.
Herein, we propose a new multidisciplinary approach for investigating the corrosion behavior of thermal barrier coatings, combining the thermal-gradient mechanical fatigue method with hot corrosion tests. Corrosive salts (Na2SO4; V2O5) of varying concentrations (10−20 mg/cm2) were deposited on the surface of yttria-stabilized zirconia (YSZ) coatings to evaluate the microstructural changes occurring during the reaction, via thermal graded mechanical fatigue tests. The tests were conducted at a surface temperature of 1150 °C in 10 min cycles and underwent applied uniaxial tensile loads. The corrosion tests show that the ZrV2O7 plays an important role as an intermediate in the collapse of the lamellar structures during the reaction, which results from the repetitive precipitation of V2O5 and m-ZrO2 from the ZrV2O7. The microstructure of corroded YSZ coatings exhibited a different degradation mechanism under a thermomechanical environment, compared with the testing under isothermal atmospheric conditions.  相似文献   

13.
《Ceramics International》2022,48(7):9602-9609
The (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 (x = 0–0.5) high-entropy ceramics were successfully prepared by a solid state reaction method and their structures and thermo-physical properties were investigated. It was found that the high-entropy ceramics demonstrate pure pyrochlore phase with the composition of x = 0.1–0.5, while (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 shows the defective fluorite structure. The sintered high-entropy ceramics are dense and the grain boundaries are clean. The grain size of high-entropy ceramics increases with the Ti4+ content. The average thermal expansion coefficients of the (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics range from 10.65 × 10?6 K?1 to 10.84 × 10?6 K?1. Importantly, the substitution of Zr4+ with Ti4+ resulted in a remarkable decrease in thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics. It reduced from 1.66 W m?1 K?1 to 1.20 W m?1 K?1, which should be ascribed to the synergistic effects of mass disorder, size disorder, mixed configuration entropy value and rattlers.  相似文献   

14.
《Ceramics International》2023,49(5):7842-7852
Thermal barrier coatings with excellent thermal performance and corrosion resistance are essential for improving the performance of aero-engines. In this paper, (Y3-xYbx)(Al5-xScx)O12 (x = 0, 0.1, 0.2, 0.3) thermal barrier coating materials were synthesized by a combination of sol-gel method and ball milling refinement method. The thermal properties of the (Y3-xYbx)(Al5-xScx)O12 ceramics were significantly improved by increasing Yb and Sc doping content. Among designed ceramics, (Y2.8Yb0.2)(Al4.8Sc0.2)O12 (YS-YAG) showed the lowest thermal conductivity (1.58 Wm?1K?1, at 800 °C) and the highest thermal expansion coefficient (10.7 × 10?6 K?1, at 1000 °C). In addition, calcium-magnesium- aluminum -silicate (CMAS) corrosion resistance of YS-YAG was further investigated. It was observed that YS-YAG ceramic effectively prevented CMAS corrosion due to its chemical inertness to CMAS as well as its unique and complex structure. Due to the excellent thermal properties and CMAS corrosion resistance, YS-YAG is considered to be prospective material for thermal barrier coatings.  相似文献   

15.
Strontium zirconate (SrZrO3) has been considered as a promising thermal barrier coating (TBC) material for application in gas turbine engines; however, the phase transition problem limits its application. In this study, an Yb2O3 and Gd2O3 codoped SrZrO3 system with excellent properties was reported. Yb2O3-Gd2O3 codoped SrZrO3 ceramic powders [Sr0.8(Zr0.9Yb0.05Gd0.05)O2.75, SZYG/YGZO], [Sr(Zr0.9Yb0.05Gd0.05)O2.95, SZYG] and pure SrZrO3 (SZO) powders were produced by a conventional solid-state reaction method. The XRD and Raman results show that, the composite SZYG/YGZO ceramics consist of the SZO and Yb0.5Zr0.5O1.75 phases with a low thermal conductivity of ~1.3 W/(m·K) at 1000°C, which is at least 40% lower than that of the SZO ceramics. The TG-DSC results show that the SZYG/YGZO ceramics have no phase transition in the temperature range of 600 to 1400°C. The thermal expansion coefficient of the SZYG/YGZO ceramics reaches 10.9 × 10−6 K−1 (1250°C). In addition, the fracture toughness of the SZYG/YGZO ceramics increases by more than 30% compared with the SZO ceramics, and this can be attributed to the presence of the Yb0.5Zr0.5O1.75 phase.  相似文献   

16.
High-performance ceramics with low thermal conductivity, high mechanical properties, and idea thermal expansion coefficients have important applications in fields such as turbine blades and automotive engines. Currently, the thermal conductivity of ceramics has been significantly reduced by local doping/substitution or further high-entropy reconfiguration of the composition, but the mechanical properties, especially the fracture toughness, are insufficient and still need to be improved. In this work, based on the high-entropy titanate pyrochlore, TiO2 was introduced for composite toughening and the high-entropy (Ho0.2Y0.2Dy0.2Gd0.2Eu0.2)2Ti2O7-xTiO2 (x = 0, 0.2, 0.4, 1.0 and 2.0) composites with high hardness (16.17 GPa), Young's modulus (289.3 GPa) and fracture toughness (3.612 MPa·m0.5), low thermal conductivity (1.22 W·m−1·K−1), and thermal expansion coefficients close to the substrate material (9.5 ×10−6/K) were successfully prepared by the solidification method. The fracture toughness of the composite toughened sample is 2.25 times higher than that before toughening, which exceeds most of the current low-thermal conductivity ceramics.  相似文献   

17.
Gadolinium zirconate (Gd2Zr2O7) prepared by solid state reaction exhibited a defect fluorite-type structure. Reactions between Gd2Zr2O7 ceramic and vanadium pentoxide (V2O5), sodium sulfate (Na2SO4), and V2O5 + Na2SO4 mixture were investigated from 700 to 1000 °C in air using an X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). V2O5 reacts with Gd2Zr2O7 to form gadolinium vanadate (GdVO4) and monoclinic zirconia (m-ZrO2) at 900 and 1000 °C in air. However, no chemical reaction product between Na2SO4 and Gd2Zr2O7 is found at 900 and 1000 °C in air. V2O5 reacts with equal molar Na2SO4 to form sodium vanadate (NaVO3) at 610 °C. In the temperature range of 700–1000 °C, Na2SO4 + V2O5 mixture reacts with Gd2Zr2O7 in air to form the final reaction products of GdVO4 and m-ZrO2.  相似文献   

18.
Seeking for new ceramics with excellent thermophysical properties as thermal barrier coatings candidate materials has become a hot research field. In this study, Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x high-entropy ceramic powders were successfully synthesized by the method of solid-state reaction, and the ceramics with single phase were prepared by pressureless sintering at 1600°C. The phase composition, microstructure, element distribution, high-temperature thermal stability, and thermophysical properties of the ceramics were studied. The results showed that Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x ceramics were composed of SrZrO3 phase and the second phase of AB2O4 spinel (i.e., SrY2O4 and SrGd2O4). The content of the second phase was gradually increased after heat treatment at 1400°C, which significantly improved the thermophysical and mechanical properties of the ceramics. The microhardness and fracture toughness of the ceramics were improved compared with that of SrZrO3. The thermal conductivities of Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x (Me = Y, Gd) ceramics were 1.30 and 1.28 W m−1 K−1 at 1000°C, which were about 35% and 40% lower than that of SrZrO3 (1.96 W m−1 K−1) and yttria-stabilized zirconia (2.12 W m−1 K−1), respectively. The thermal expansion coefficients of Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x (Me = Y, Gd) ceramics were 12.8 × 10−6 and 14.1 × 10−6 K−1 at 1300°C, respectively, which was more closer to the superalloys compared with SrZrO3 ceramic (11.0 × 10−6 K−1).  相似文献   

19.
《Ceramics International》2022,48(18):26400-26407
The high-entropy rare earth zirconate (La1/5Nd1/5Sm1/5Gd1/5Yb1/5)2Zr2O7 porous ceramics ((5RE1/5)2Zr2O7 PCs) were prepared using a foam-gel casting-freeze drying method combined with segmented calcination process. The results of SEM, TEM, and XRD analyses of the (5RE1/5)2Zr2O7 PCs indicated the formation of a defective fluorite crystal structure, with the rare earth elements homogeneously distributed. Meanwhile, the as-prepared (5RE1/5)2Zr2O7 PCs exhibited high porosity, low bulk density, low thermal conductivity, and relatively high compressive strength. Moreover, the high-temperature thermal conductivity of the samples was evaluated, and the results showed that the (5RE1/5)2Zr2O7 PCs maintain a thermal conductivity of 0.150 ± 0.002 W m?1 K?1 even at 1000 °C. The strategy used in this paper can be extended to the synthesis of other high-entropy porous ceramics with high porosity and low thermal conductivity, which is suitable for applications as thermal insulation materials.  相似文献   

20.
In this paper, a series of solid solutions ceramics of (AlxGd1-x)3TaO7 (x = 0, 0.01, 0.03, 0.05) were synthesized via solid-state reaction. X-ray diffraction (XRD) and Raman spectroscopy analysis indicated that the crystal structure of (AlxGd1-x)3TaO7 ceramics is weberite in spite of the content of Al3+ is up to 5 mol.%. The thermal conductivities of (AlxGd1-x)3TaO7 ceramics range from 1.37 W?m?1 K?1 to 1.47 W?m?1 K?1 at 900 ℃, which is much lower than that of 7–8 YSZ (about 2.5 W?m?1 K?1). The thermal expansion coefficients (TECs) of (AlxGd1-x)3TaO7 ceramics vary in the range of 6–10 × 10-6 K-1 within the temperature range 100–1200 ℃, and the values are close to the TECs of 7–8 YSZ. Given the low thermal conductivity and high thermal expansion coefficients of (AlxGd1-x)3TaO7 ceramics, they have the potential to be the next generational thermal barrier coating materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号