首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(4):3818-3823
Previous work has shown that both TiN and TiO2 coatings can inhibit the metallic catalytic coking effectively, but both of them have their own shortage. In this work, TiC coating was prepared on the surface of SS304 tube using TiCl4-CH4-H2 by CVD method. Its morphology, elemental composition, thickness and oxidation resistance were characterized by SEM, EDX, metalloscopy and TPO tests, respectively. The results show that CVD TiC coating is gray, homogeneous, and dense without cracks or holes. The TiC coating presents a cuboid particle structure with the sizes of about 1.0 µm for the cuboid crystals, and the Ti/C ratio close to 1:1, while the average thickness is about 11.62 µm. TPO results show that the TiC coating begins to react with O2 and release CO2 at about 810 °C. Compared with the TiN coating (The initial oxidation temperature of TiN is about 350 °C), the oxidation resistance of TiC coating is improved substantially. As a conclusion, the high oxidation resistance order is TiO2 coating>TiC coating>TiN coating. Furthermore, the temperature programmed cracking of RP-3 Chinese jet fuel was employed to compare the anti-coking performance of TiN, TiO2 and TiC coatings. The results show that each of TiN, TiO2 and TiC coating has obvious anti-coking effect, and the anti-coking performance order is TiN coating=TiC coating>TiO2 coating.  相似文献   

2.
《Ceramics International》2023,49(7):10354-10359
One of the critical issues in the application of supercritical water oxidation technology is to improve the corrosion resistance of reactor materials. Use of Al2O3 coating is one of the most promising methods to address this issue. In this study, thick NiAl/Al2O3 coatings on Inconel 625 substrates were prepared by a consecutive pack embedding and in-situ thermal oxidation process. The effect of aluminizing and oxidation temperature on phase structure and coating thickness is studied. Results show the diffusion of Al from the exterior to the interior of the alloy matrix to form intermetallic compounds between Al and metal elements in the matrix (Ni, Cr, Mo, etc.). Moreover, the coating thickness can reach above 300 μm at the aluminizing temperature of 950 °C. Increasing the aluminizing temperature above 950 °C will not increase the coating thickness further. After high temperature oxidation subsequently, only phases of NiAl and Al2O3 were detected. The formation of Al2O3 layer can be ascribed to the surface oxidization of Al. And the NiAl between the alloy substrate and Al2O3 coating provides an interfacial layer that can alleviate the crack or exfoliation of ceramic coating due to the mismatching of thermal expand coefficient. The thick NiAl/Al2O3 coatings prepared by aluminizing 950 °C and oxidizing at 1100 °C exhibit satisfied corrosion resistance after supercritical water test. This work would provide a significant method to develop advanced ceramics coating for the corrosion resistance of alloys.  相似文献   

3.
In this study, Al2O3/CrAlSiN multilayer coatings with various periods were prepared using a hybrid process involving overlapping magnetron sputtering of CrAlSiN and atomic layer deposition (ALD) of Al2O3. The influence of the number of Al2O3 layers on the mechanical properties, corrosion behavior and oxidation characteristics of the coatings was studied using nano/micro indentation, electrochemical corrosion, and high temperature static oxidation tests. The results show that the multilayer structure can effectively prevent crack propagation during the coating and subsequently increase the coating toughness. A substantial improvement in the resistance to electrochemical and oxidation corrosion was observed in the Al2O3/CrAlSiN multilayer coatings and increasing the number of Al2O3 layers dramatically increases the corrosion durability. The Al2O3 ALD layers are expected to inhibit the diffusion of corrosive substances such as ions and oxygen and the increase of the Al2O3 layer number decreases the diffusion fluxes of the coating elements to the surface and limit the oxide growth, resulting in the evolution of the oxidation produces from irregular particles to nano-walls/fibers. It is supposed that the PVD/ALD hybrid process may open a new hard coating design concept by providing a superior toughness and corrosion/oxidation resistance.  相似文献   

4.
Nitride coatings have been generally applied on light alloys like titanium and aluminium to promote their multiple performances, including hardness, thermal stability and wear resistance. In this work, TiAlSiN/TiN multilayered (ML) coating and TiAlSiN single-layer (SL) coating were deposited on TC18 (Ti5Al5Mo5V1CrFe) alloy by Multi-arc ion plating technique. The microstructure and chemical composition of the coatings were evaluated by SEM, XRD and XPS. Additionally, hardness, adhesion and wear resistance were measured through nanoindentation, scratch spectrometer and ball-on-disk tribometer. The results present that both ML and SL coating contain three main phases of TiN, Al2O3 and Si3N4. Nevertheless, the adhesion of ML coating is 62.4 N, compared to that of the SL coating is 51.8 N. The parameter H3/E2 as an indication of plastic deformation to evaluate wear resistance shows that the ML coating has high hardness and high toughness concurrently. The tribological study indicated that the wear rate of the ML coated specimen was 1/7 of the SL coated counterpart.  相似文献   

5.
The solid impingement erosion resistance of a tetrahedral amorphous carbon (ta-C) coating (sp3 bonding fraction ∼80%, thickness 20 μm) was compared to the erosion resistance of stainless steels, WC–Co hard metal, sintered SiC, sintered Al2O3, synthetic ruby (Al2O3, grain size of the order of mm) and a commercial TiN coating. The ta-C coating was deposited by the filtered pulsed plasma arc-discharge method on an AISI316L stainless steel sample. All other materials, except the ta-C and the TiN, were in a bulk form. The experiments revealed that the volume removal rate of bulk materials was 1.5–540 times higher than that of ta-C, depending on the material. The extensive chipping of TiN hindered a meaningful comparison of the measured results to those received from bulk materials. The erosion experiments were performed with a test apparatus, which used pressurized air to accelerate angular Al2O3 particles (60–77 μm in diameter). The erosion damage was analyzed with a surface profilometer and an optical microscope. The critical thickness for the coating that was able to resist catastrophic delamination under particle exposure, was found to be approximately 1 μm. The extremely low erosion rate of ta-C, when eroded with low values of angle of attack (∼20°), implies that ta-C erodes in a brittle manner.  相似文献   

6.
A CeO2/α‐Al2O3 bilayer was coated on a high temperature alloy (Incoloy 800H) by sol–gel dip‐coating and was evaluated for its potential as an anticoking barrier and coke oxidation catalyst. The bilayer effectively functioned as a barrier to metal surface catalyzed coking. The film prevented filamentous catalytic coking via blocking surface active metallic sites on the Incoloy substrate. Furthermore, the bilayer reduced the oxidation temperature of pyrolytic coke deposited on the film surface as compared to a bare oxidized Incoloy substrate, mostly owing to the oxidation catalytic activity of the CeO2 layer. Finally, it is demonstrated that the presence of the α‐Al2O3 buffer layer is critically important to the overall performance. Without the α‐Al2O3 layer, a CeO2 layer nearly completely lost both its barrier and oxidation catalytic functions. It is presumed that metallic species migrating from the substrate during high temperature treatments are responsible for the CeO2 deactivation, likely by blocking catalytic sites on the CeO2 surface. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4019–4026, 2018  相似文献   

7.
TiN/TiAlN multilayers of 2 μm thickness were successfully prepared by reactive DC magnetron sputtering method. XRD pattern showed the (1 1 1) preferential orientation for both TiN and TiAlN layers. XPS characterization showed the presence of different phases like TiN, TiO2, TiON, AlN and Al2O3. Cross sectional TEM indicated the columnar growth of the coatings. The average RMS roughness value of 4.8 nm was observed from AFM analysis. TiN/TiAlN coating showed lower friction coefficient and lower wear rate than single layer coatings. The results of electrochemical experiments indicated that a TiN/TiAlN multilayer coating has superior corrosion resistance in 3.5% NaCl solution.  相似文献   

8.
Composite coatings Ni/Al2O3 were electrochemically deposited from a Watts bath. Al2O3 powder with particle diameter below 1 μm was codeposited with the metal. The obtained Ni/Al2O3 coatings contained 5-6% by weight of corundum. The structure of the coatings was examined by scanning electron microscopy (SEM). It has been found that the codeposition of Al2O3 particles with nickel disturbs the nickel coating's regular surface structure, increasing its microcrystallinity and surface roughness. DC and AC electrochemical tests were carried out on such coatings in a 0.5 M solution of Na2SO4 in order to evaluate their corrosion resistance. The potentiodynamic tests showed that the corrosion resistance of composite coating Ni/Al2O3 is better than that of the standard nickel coating. After 14 days of exposure the nickel coating corrodes three times faster than the Ni/Al2O3 coating. The electrochemical behaviour of the coatings in the corrosive solution was investigated by electrochemical impedance spectroscopy (EIS). An equivalent circuit diagram consisting of two RC electric circuits: one for electrode, nickel corrosion processes and the other for processes causing coating surface blockage, were adopted for the analysis of the impedance spectra. The changes in the charge transfer resistance determined from the impedance measurements are comparable with the changes in corrosion resistance determined from potentiodynamic measurements.  相似文献   

9.
Electric arc ion deposition technique was adopted to deposit TiN coating on Al2O3-based ceramic composite. Scanning electron microscopy and secondary ion mass spectrometry were used to analyze the microstructure, phase constitution, and quality of the TiN coating and the interface. Surface roughness and micro-hardness of the TiN coating were measured to evaluate its quality. Flexural strength of ceramic materials is dependent on both their inherent resistance to fracture and the presence of defects, thus it was used to investigate the effect of electric arc ion deposition technique on the surface modification of Al2O3-based ceramic composite. Experimental results show that the higher the deposition bias voltage, the better the coating quality. The TiN coating is homogeneous, with a uniform surface, and free of defects when the deposition bias voltage is 300 V. The TiN coating strongly adheres to the Al2O3-based ceramic composite, and the observed elemental interface diffusion strengthens the interface bonding.  相似文献   

10.
11.
YSZ/Al2O3 micro-laminated coatings were successfully prepared on the surface of MCrAlY substrates by means of electrolytic deposition and microwave sintering. The as-prepared YSZ/Al2O3 coatings were characterized by high-resolution field emission SEM and XRD. Laminated structures of alternate YSZ and Al2O3 layers were observed in the coating with the phase composition of Y2O3 stabilized t-ZrO2, α-Al2O3 and θ-Al2O3. High-temperature cyclic oxidation test at 1000 °C in air was also performed to investigate the oxidation and spallation resistance of such coatings on MCrAlY substrates. The results indicate that such coatings exhibit not only excellent oxidation resistance but also good spallation resistance under thermal cycling due to the structure of multi-sealed Al2O3 layers and the preferable high-temperature mechanical properties induced by the designed laminated composite structures, respectively.  相似文献   

12.
《Ceramics International》2017,43(15):12126-12137
Mechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition, coatings were annealed at various temperatures, 300, 1000 and 1200 °C, and next exposed to cyclic thermal and slurry tests. Regardless of annealing temperature and the size of TiO2 nanoparticles, the outer layer of all coatings was porous. The first five thermal cycles caused a rapid increase of aluminum content of the surface layer to 30–37 wt%, but further increase in the number of thermal cycles did not affect the aluminum content. The oxidation rate of coating-substrate system was lower during the thermal tests than during annealing. The oxidation rate was also lower for smaller TiO2 particles (15 nm) forming the coating than for the larger ones (32 nm). The protective properties of Al2O3 + TiO2 coating against intense oxidation of substrate were lost at 1200 °C. Slurry tests showed that coatings annealed at 1000 °C had the best slurry resistance, but thermal tests had weakened this slurry resistance, mainly due to decreasing adhesion of the coating.  相似文献   

13.
Y3Al5O12 (YAG), Y2O3, and Al2O3 ceramic coatings were manufactured to investigate the plasma erosion properties. The X‐Ray Diffraction (XRD) analysis confirmed that YAG coating was synthesized successfully by Y2O3 and Al2O3 mixture suspension using the plasma spraying method. Meanwhile, metastable phases were found in Y2O3 and Al2O3 coatings due to the quenching in cooling process of melted droplets. The coating surface morphology and microstructure of cross sections were characterized by SEM. The results reveal that coatings are composed by ultrafine splats and exhibit dense lamellar structure. The plasma erosion properties were evaluated at different etching test power under Ar/CF4/O2 plasma gas. The experimental results clarify that both of YAG and Y2O3 coatings show the better plasma erosion resistance than Al2O3 coatings. The formation of fluorination layer surface prevents the coatings from further erosion with plasma gas. Moreover, the etching rate of coatings depended on the fluorination and removing rate of fluoride layer.  相似文献   

14.
Yttria-modified silicide (MoSi2-Y2O3) oxidation-resistant coatings with multiple Y2O3 contents were prepared using supersonic atmospheric plasma spraying, and the oxidation resistance was investigated at 1700 °C with static atmosphere. Experimental results indicated that the sprayed MoSi2-Y2O3 coating possessed good compactness, which adhered well to the SiC transition layer. Meanwhile, the Y2O3 addition greatly enhanced the bonding strength of the coating, and extended its service life at 1700 °C. Wherein the MoSi2-20 wt.%Y2O3 coating exhibited the highest adhesive strength and best oxidation resistance with the lowest mass loss among all the coatings. In practice, the Y2O3 changed the microstructures of formed oxide glass scale during oxidation, and then modified the oxidation resistance of the coating. The action mechanism of Y2O3 on the oxidation behavior of MoSi2-Y2O3 coating was analyzed.  相似文献   

15.
《Ceramics International》2022,48(8):10911-10920
A novel MoSi2–Al2O3 composite coating was prepared on Mo-based TZM alloy by slurry sintering method. The oxidation behavior of the coating was evaluated at 1600 °C in static air. Microstructure and phase composition of the as-prepared and oxidized coatings were characterized, and the antioxidant mechanism of the coating at high temperature was discussed. A three-layer structure was observed in the as-prepared coating, consisting of a ~2 μm thick Mo5Si3 diffusion layer, a ~65 μm thick MoSi2 inner layer and a ~36 μm thick outer layer of mixture of MoSi2 and Al2O3. After oxidation at 1600 °C for 5 h, all MoSi2 phases were completely converted to intermediate silicide Mo5Si3 by solid-state diffusion, and the formed Mo5Si3 phase would be transformed into Mo3Si phase with further extending the oxidation time. Furthermore, a dense oxide layer of SiO2-mullite was formed on the specimen surface, which can effectively protect the material to further oxidation. The MoSi2–Al2O3 coating could protect the substrate effectively at 1600 °C for 20 h without failure. The enhanced oxidation resistance of MoSi2–Al2O3 coating is due to the formation of multi-layer structure containing a SiO2-mullite composite oxide outer layer with high thermal stability and low oxygen permeability.  相似文献   

16.
《Ceramics International》2022,48(7):9286-9296
Al2O3 coating and Al2O3/Ag (10%) composite coating were prepared on the surface of GH4169 superalloy by the atmospheric plasma spraying technology. And an in-situ synthesis method was applied to introduce the Ag particles into a part of Al2O3 coatings to obtain Al2O3/Ag(synthesis) composite coating. Then, the microstructure and mechanical properties of these three Al2O3-based coatings were systematically studied in this work. In order to reveal the lubrication characteristics of Ag, their friction tests were carried out at room temperature (RT), 400 °C, 600 °C and 800 °C, respectively. The results showed that both microstructure and mechanical properties of Al2O3/Ag(synthesis) composite coating were better than that of Al2O3/Ag (10%) composite coating because many pores and cracks produced during the direct spraying. Although the friction coefficients of two kinds of composite coatings were close to that of Al2O3 coatings at RT, their wear rates were both greatly decreased due to the introduction of Ag. In addition, the lubricating performance of Ag was not enough to reduce their friction coefficients when friction temperature is lower than 600 °C. However, the friction coefficients of these composite coatings were both reduced to about 0.3 at 800 °C . At this time, the Al2O3/Ag(synthesis) composite coating also exhibited a lower wear rate because of its dense microstructure and excellent mechanical properties.  相似文献   

17.
Al2O3-modified SiC (AOSC) and Al-modified SiC (ASC) coatings were prepared on carbon/carbon (C/C) composites by one-time pack cementation (PC). Their microstructures and anti-oxidation performances were studied. Compared with ASC coating, AOSC coating shows more conspicuous defects (micro-cracks and holes) and lower densification. ASC coating can offer better oxidation resistance and thermal shock resistance to C/C composites than AOSC coating. Al additive can more efficiently improve the sinterability of SiC, which causes the above results. Besides, Al2O3 oxidation product is more stable than SiO2 (l) of oxidized SiC at 1500 °C based on the thermodynamic analysis.  相似文献   

18.
《Ceramics International》2019,45(15):18899-18907
ZrO2/yttria-stabilized zirconia (YSZ) doping Al2O3 ceramic coating was fabricated via cathodic plasma electrolytic deposition (CPED) technique. The microstructures and the chemical and phase compositions of the doped coating were characterized, the mechanical properties and the high temperature oxidation resistance were evaluated, and the doping mechanism was also discussed in detail. The results showed that, doped Zr4+ and Y3+ ions could effectively reduce the working voltage during CPED process and increase the content of metastable γ-Al2O3 in the coating. Accordingly, the doped ZrO2/YSZ significantly refined the grain size of Al2O3, as well as remarkably improved the high temperature oxidation resistance, the micro-structural compactness and hardness of the Al2O3 CPED coating. This study displayed here constructed an efficiently method for the fabrication of multifunctional coating on the surface of TiAl alloy.  相似文献   

19.
In the work, TiAlN for physical vapor deposition (PVD), multilayer TiN-Al2O3-TiCN-TiN for chemical vapor deposition (CVD), and diamond-like carbon (DLC) for plasma-enhanced chemical vapor deposition (PECVD) were deposited on the cermet inserts. Characteristics and wear behaviors of the three coated cermets during dry cutting of 7075 aluminum alloys were observed. The results show that TiN-Al2O3-TiCN-TiN coatings have highest adhesion strength and hardness. At the cutting speed of 1100 r/min, the depth of 0.2 mm, and the feed rate of 0.1 mm/r, the three coated inserts show the best wear-resistant properties. In this case, TiN/Al2O3/TiCN/TiN shows the worst wear-resistant properties (value of the flank wear [VBB] = 0.062 mm), while DLC coatings show the most excellent wear-resistant properties (VBB = 0.046 mm). During the cutting of aluminum alloys, which have high plasticity and low melting point, adhesive wear dominate on the flank of the inserts. The thickest coating of TiN/Al2O3/TiCN/TiN results in the bluntest cutting edge, which form the most serious adhesive worn zone. For the TiAlN and DLC coatings, due to a smaller cutting force, the two coatings have much better wear resistance. Further, the self-lubricating properties of DLC show excellent effect on protecting the inserts. Thus, the DLC-coated cermets have the best wear-resistant properties. Further, the TiAlN-coated cermets have the widest wear-affected zone while the DLC coating has the narrowest.  相似文献   

20.
To improve the resistance of the hydrotransport pipe steel to corrosion and erosion in oil sand slurry, a Ni-Co-Al2O3 composite coating was fabricated by electrolytic deposition on X-65 pipe steel substrate. Potentiodynamic polarization curve and electrochemical impedance measurements show that the deposited coating significantly improves the corrosion resistance of the steel in water-oil-sand solution that simulates the chemistry of oil sand slurry. The corrosion resistance of the coating increases with the increasing Al2O3 particle concentration in electrolyte, cathodic current density, electrode rotating speed and temperature. However, a maximum value of corrosion resistance as a function of the depositing parameters is observed, indicating that the optimal electrodepositing parameters and operating conditions are essential to the maximization of the corrosion resistance of the coated steel in oil sand slurry. The optimal depositing conditions are suggested in the given system. The morphology, structure and composition of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The Ni-Co-Al2O3 composite coating develops a compact, uniform, nodular structure with an average thickness of 50-200 microns. The Al2O3 amount in the coating increases with the increasing Al2O3 concentration in electrolyte, which also enhances the co-deposition of Ni and Co. The micro-hardness and wear resistance of the composite coatings are much higher than the steel substrate and increase with the increasing Al2O3 particle amount in the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号