首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以五倍子鞣质粗提物为原料,通过静态吸附与解吸实验比较NKA-2、NKA-9、HPD100、AB-8、D101、D301、聚酰胺及732八种吸附树脂对五倍子鞣质的吸附与解吸性能,筛选得到最优树脂NKA-2。然后通过动态吸附与解吸的单因素试验和正交试验,优化筛选NKA-2大孔吸附树脂分离纯化五倍子鞣质的工艺技术参数。结果表明,当主要考虑鞣质得率时,最优工艺参数为上样质量浓度5mg/mL、上样流速1BV/h、上样体积6BV、洗脱剂乙醇体积分数80%、洗脱流速1BV/h、洗脱体积4BV,其鞣质得率可达85.37%,纯度可达62.99%;当主要考虑鞣质纯度时,最优参数为上样质量浓度6mg/mL、上样流速2BV/h、上样体积5BV、洗脱剂乙醇体积分数80%、洗脱流速3BV/h、洗脱体积4BV,其鞣质纯度可达76.97%,得率达67.78%。  相似文献   

2.
目的对采用大孔吸附树脂法分离纯化茶叶籽饼粕中茶皂素的工艺进行优化,为进一步开发利用茶叶籽资源提供依据。方法以茶皂素吸附率与解吸率为指标,通过静态吸附与解吸实验筛选最优树脂。通过单因素实验、正交实验及验证性实验,优化最优树脂动态吸附与解吸茶皂素的工艺参数。结果D101树脂的静态吸附量与解吸率分别为142.974 mg/g和98.02%,为分离纯化料液中茶皂素的最优树脂;当主要考虑茶皂素得率时,其最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速3 BV/h、上样体积6 BV、乙醇洗脱体积浓度80%、洗脱流速3 BV/h、洗脱剂体积5 BV,在该工艺参数条件下,茶皂素得率为74.25%,纯度为84.30%;当主要考虑茶皂素纯度时,最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速4 BV/h、上样体积7 BV、乙醇洗脱体积浓度70%、洗脱流速3 BV/h、洗脱体积5 BV,在该工艺参数条件下,茶皂素纯度为97.7%,得率为72.04%。结论 D101大孔吸附树脂是一种可应用于茶叶籽饼粕中茶皂素分离纯化的较好树脂。  相似文献   

3.
大孔吸附树脂分离纯化核桃壳总黄酮   总被引:2,自引:2,他引:2  
通过比较5种大孔吸附树脂对核桃壳总黄酮的吸附解吸性能,筛选出NKA-9树脂较适合纯化核桃壳总黄酮,并对其进行动态吸附特性研究。所确定优化工艺参数为:上样浓度1.0 mg/mL,pH值5.0,上样流速1.0mL/min,5BV体积分数95%乙醇洗脱效果最佳。核桃壳粗提物中总黄酮纯度为3.58%,经NKA-9树脂纯化后总黄酮纯度为62.3%,回收率达88.9%。  相似文献   

4.
本试验采用水提法提取荷叶黄酮,按提取温度80℃、料液比1∶20、提取时间为1.5 h条件得到荷叶黄酮提取量为17.33 mg/g。比较X–5、HP20、HPD100、HZ801、HZ818大孔吸附树脂对荷叶黄酮的静态吸附、洗脱性能,确定HPD100为适宜树脂。进一步考察大孔树脂HPD100的动态吸附洗脱能力,研究结果得出大孔树脂HPD100分离荷叶黄酮的适宜工艺参数为:常温下流速为2 BV/h,上样液浓度为0.700 mg/m L上柱吸附,洗脱流速为3 BV/h,体积分数60%乙醇洗脱,用量60 m L。在此工艺条件下,总黄酮得率为73.78%,总黄酮纯度为64.2%。对油脂抗氧化试验结果显示,添加量为1.50 mg荷叶黄酮抗氧化作用比2 mg维生素C好。  相似文献   

5.
采用大孔树脂富集纯化北冬虫夏草发酵液中的虫草素,通过比较发现6种大孔树脂中NKA-Ⅱ型大孔树脂对虫草素的吸附与解吸效果最好。静态和动态参数优化结果表明,NKA-Ⅱ型树脂纯化虫草素的最佳吸附平衡时间为6 h,解吸平衡时间为3 h。优化后的动态参数为:以1 BV/h流速上样吸附,体积分数10%乙醇除杂,70%乙醇以4 BV/h的流量洗脱。该工艺所得样品虫草素质量分数达35%,纯度提高了10倍,虫草素回收率达90%以上,经反复结晶后得到纯度大于98%的虫草素。  相似文献   

6.
采用醇提法,按固液比1 g∶18 m L、体积浓度65%乙醇、温度70℃、时间3 h的提取条件所得银杏叶提取液黄酮质量浓度为0.735 mg/mL。比较D101、HZ816、HPD450、AB-8大孔吸附树脂、聚丙烯酰胺树脂对银杏叶黄酮的静态吸附、洗脱性能,确定HPD450为适宜树脂,吸附率为98.87%,解吸率为71.52%。进一步考察大孔树脂HPD450的动态吸附洗脱能力,得出其的适宜工艺参数为:常温2 BV/h上柱吸附,提取液按体积稀释1倍(黄酮质量浓度为0.367 5 mg/mL)上柱吸附,洗脱流速为3 BV/h,用50 mL体积浓度80%乙醇洗脱。在此条件下,得到总黄酮得率86.1%,纯度为34. 2 g/100g。抗氧化活性结果显示,银杏叶黄酮具有明显的清除自由基能力,能延长小鼠常压缺氧条件下的存活时间。  相似文献   

7.
以"双红"山葡萄为原料,研究NKA-Ⅱ,NKA-9,AB-8,D-101和HPD-100 5种大孔树脂对"双红"花青素的纯化作用。通过静态-吸附解吸试验,筛选出D101树脂为最佳纯化材料,确定最佳吸附-解吸温度为25℃。D101树脂最佳动态吸附-解吸工艺参数为:25℃,上样浓度22.5 mg/m L,上样量8 BV,上样流速为2 m L/min,洗脱剂为75%乙醇-0.01%盐酸,洗脱流速2 m L/min,洗脱剂用量7 BV。该条件下,"双红"花青素纯度为27.78%±0.043%。  相似文献   

8.
为优化大孔吸附树脂分离纯化苦荞总皂苷的工艺条件,通过静态吸附解吸实验筛选出适合分离纯化苦荞总皂苷的大孔吸附树脂SP700,其饱和吸附量为(25.241±0.590)mg皂苷/g树脂。研究了样液浓度、吸附时间对吸附容量的影响,乙醇体积分数对解吸得率的影响,并进行了动态实验,确定了SP700型大孔树脂分离纯化苦荞总皂苷的最佳工艺条件为:最佳上样浓度约0.586mg/m L,流速2BV/h,树脂比样液体积为1∶1,动态洗脱实验中,上样后用体积分数分别为50%和70%的乙醇溶液进行分段洗脱,洗脱流速为2BV/h,用量为2~3BV,洗脱得率最高可达到88.9%,洗脱液蒸干后所得固形物中皂苷含量较提取液固形物中皂苷含量提高了约2倍。  相似文献   

9.
目的:为探索适宜分离和纯化桑白皮多糖的大孔树脂,研究其最佳纯化工艺参数。方法:通过静态吸附-洗脱试验对十种不同型号大孔树脂(H103、HP20、AB-8、X-5、D-101、DM301、DA-201、NKA-9、HPD-722、HPD300)的吸附量、吸附率及解吸率进行考察,优选最佳纯化树脂,并研究了上样液pH、上样质量浓度、上样速度、洗脱剂体积分数、洗脱剂用量及洗脱流速对其纯化工艺的影响,确定最佳纯化工艺参数。结果:D-101型为最优树脂,最佳上样条件为:pH=3.0、上样浓度为4.0 mg/mL、上样速度为2.0 BV/h;最佳洗脱条件为:75%的乙醇洗脱液、洗脱剂用量为3.5 BV、流速为1.0 BV/h。经过该工艺纯化后,桑白皮中多糖的纯度由16.12%±1.20%提高到了74.45%±1.15%。结论:D-101型大孔树脂能够很好的富集、纯化桑白皮中的多糖,为更高效的利用桑白皮资源提供了理论依据。  相似文献   

10.
用80%乙醇(含0.1%乙酸)超声辅助提取黑加仑多酚(简写为BCP),比较五种大孔树脂对BCP的静态吸附和解吸能力,筛选出纯化BCP的最佳树脂;结果表明NKA-9为BCP纯化的最佳树脂,具有较好的吸附、解吸效果;对BCP的纯化动态吸附和洗脱条件进行研究;结果表明吸附BCP条件为上样液p H 3,质量浓度5 mg/m L、吸附流速2BV/h。解吸条件为解吸液洗脱液体积分数70%、解吸流速2 BV/h、解吸液所用体积为200 m L。  相似文献   

11.
目的:利用大孔吸附树脂纯化技术研究倒卵叶五加中总皂苷的最优纯化工艺。方法:通过对NKA-9、D101、LS-303、LS-45和LS-21等5种大孔吸附树脂的静态实验,筛选得到最佳树脂;在此基础上,通过动态实验确定最佳树脂对倒卵叶五加总皂苷的纯化的最优工艺参数。结果:LS-303树脂纯化倒卵叶五加总皂苷的效果最好,最优工艺条件为:上样液浓度约为3mg·mL-1,上样量为9BV,上样流速为2BV/h;解吸剂为80%的乙醇,解吸流速2BV/h,洗脱剂用量为2.5BV。结论:LS-303型大孔吸附树脂可有效分离纯化倒卵叶五加中的总皂苷。  相似文献   

12.
研究陕产重楼中总皂苷利用大孔吸附树脂纯化的最优工艺。应用7种大孔吸附树脂吸附重楼中的总皂苷进行静态实验,筛选得到最佳树脂;通过动态实验确定最佳树脂对重楼总皂苷的纯化的最优工艺参数。结果表明,HPD-400A树脂纯化重楼总皂苷的效果最优,最优工艺条件为上样液质量浓度5mg/mL,上样量8BV,流速3BV/h,解吸流速2BV/h,解吸剂体积分数75%的乙醇,洗脱剂用量4BV,按此工艺条件制备的重楼总皂苷的含量为62.68%;Freundlich等温吸附模型可更好的描述树脂对重楼总皂苷的吸附,采用HPD-400A树脂分离纯化陕产重楼中的总皂苷效果较好。  相似文献   

13.
采用大孔吸附树脂纯化樟树叶醇提液中木脂素类化合物。通过对比6种大孔树脂对樟树叶中木脂素吸附-解吸效果,从中筛选一种最适大孔吸附树脂作为纯化材料,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响,以及洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交试验优化大孔树脂纯化木脂素的工艺。试验结果表明,大孔树脂最佳吸附-解吸工艺条件为:7BV上样量、2.12mg/mL上样浓度、1.0 mL/min上样速率、80%乙醇洗脱剂、洗脱流速2BV/h,洗脱剂用量8BV,该条件下樟树叶中木脂素得率为66.68%,纯度为15.91%,表明该大孔树脂对于樟树叶中木脂素纯化效果较好。  相似文献   

14.
采用大孔树脂法提取和纯化大血藤中原花青素,以吸附及解吸附能力为指标,比较D101、HPD100、X5、AB8、及ADS17五种大孔树脂对原花青素的吸附效率,通过单因素实验考察上样流速、上样浓度、洗脱流速、洗脱剂用量及洗脱剂体积分数对提取原花青素含量的影响,优选树脂的动态吸附及解吸附条件,并评价提取得到原花青素的纯度。结果表明,HPD100树脂对大血藤中原花青素的吸附和解吸附效果最好,上样流速2 BV/h,上样浓度6 mg/m L,洗脱流速1 BV/h,洗脱剂用量2 BV的纯化效果最好,100%乙醇的洗脱量最大,得到原花青素的纯度是粗提物的1.76倍。  相似文献   

15.
目的:筛选出分离纯化石蒜中加兰他敏的最佳大孔树脂型号及工艺条件。方法:通过静态、动态相结合的方法,以加兰他敏吸附率、解吸率为指标,确定最佳工艺。结果:HPD300型树脂具有最佳的吸附和洗脱参数,其最佳工艺为粗提物上样液中加兰他敏1.74g/L、吸附流速2BV/h、最大上样量9BV;吸附后先以4BV水洗去杂质,再用8BV 70%乙醇溶液以2BV/h的速率进行洗脱,加兰他敏纯度可由原来的10.89%提高到45.52%。结论:HPD300可较好地吸附分离石蒜中加兰他敏,操作简单、安全、成本低廉,有较高的应用价值。  相似文献   

16.
木二糖是低聚木糖的重要组成部分。通过对S-Ca树脂、ZA-Ca树脂、分子筛、P-Ca树脂、Na+树脂、L-Na树脂对木二糖的静态吸附与解吸的比较,在筛选出一种具有较高吸附率与解吸量树脂的基础上,比较不同洗脱流速下不同体积分数乙醇梯度洗脱对木二糖洗脱量、纯度、得率的影响及最优流速下不同乙醇体积分数等梯度洗脱对木二糖洗脱量、纯度、得率的影响。结果表明, Na树脂是几种树脂中分离纯化木二糖的最佳树脂,最佳参数:流速为0.8 BV,经过2 BV的10%乙醇进行梯度洗脱的木二糖、总得率和总纯度分别为4.78 mg, 62.8%和5.7%。  相似文献   

17.
通过静态吸附-解吸试验从6种大孔树脂中筛选出最适合刺葡萄酒渣中白藜芦醇纯化的大孔树脂,并对其进行静态、动态吸附-解吸工艺条件优化,结果表明:供试树脂中,大孔树脂H103为最适树脂,其静态吸附-解吸最优条件为:上样液质量浓度为0.65 mg/mL,上样液pH值为3,洗脱液为体积分数70%乙醇;动态吸附-解吸最优条件为:上样流速1.5 mL/min,上样液体积6 BV;洗脱流速0.5 mL/min,洗脱液体积6 BV,在此条件下,树脂H103对白藜芦醇的吸附量为55.7 mg/g,解吸率为89.86%,经树脂H103纯化后,样品纯度由11.54%提高至59.76%。  相似文献   

18.
张德谨  陈义勇  胡雅琳  刘祥 《食品与机械》2018,34(2):166-170,194
为了对乌饭树叶黄酮进行纯化,通过动态吸附与解吸试验,探讨上样体积、上样浓度、上样流速、洗脱剂、洗脱流速以及洗脱体积对乌饭树叶黄酮吸附及解吸效果的影响,然后利用蛋白质和多糖的脱除率以及HPLC谱图对纯化效果进行评价。结果表明:NKA-II树脂具有较高的吸附率、解吸率以及较短的吸附时间,确定NKA-II树脂作为乌饭树叶黄酮纯化的柱填料,大孔树脂NKA-II纯化乌饭树叶黄酮最佳工艺条件为:上样体积2.0BV(柱体积),上样浓度0.75mg/mL,上样流速1 mL/min,洗脱剂为50%(体积分数)的乙醇,洗脱流速1.0 mL/min,洗脱体积3BV。在该纯化工艺条件下,HPLC表明纯化后乌饭树叶黄酮纯度明显提高,蛋白质脱除率达76.32%,多糖脱除率达65.45%,黄酮纯度达48.92%。  相似文献   

19.
采用静态吸附和动态吸附实验考察AB-8、D101、HPD100、HPD400、HPD450、HPD500、HPD600和HPD7007种大孔树脂对薰衣草总黄酮富集纯化效果,并优化最佳大孔树脂对薰衣草总黄酮的吸附与解吸工艺条件.结果表明,AB-8型大孔树脂具有良好的吸附与解吸附性能,最佳工艺条件为,最大上样量为12.76 mg/mL树脂,吸附流速为1.0 mL/min,洗脱采用70%乙醇以1.0 mL/min的流速洗脱5 BV;薰衣草总黄酮的纯度可达60%以上.  相似文献   

20.
大孔树脂纯化笋壳中的黄酮物质   总被引:1,自引:0,他引:1       下载免费PDF全文
通过比较5种大孔吸附树脂对笋壳黄酮的吸附分离性能,筛选出适合分离笋壳黄酮的树脂,并对其动态吸附特性进行研究。结果表明:HPD600树脂对笋壳黄酮不仅吸附量大,而且解吸率高,适合笋壳黄酮的分离富集。其分离笋壳黄酮的工艺参数为:上样质量浓度为3.89 mg/mL,pH 3.0,上样量为7 BV,流速3 BV/h;用6 BV的体积分数40%乙醇洗脱,解吸效果最佳,黄酮总回收率为82.33%,可得总黄酮质量分数为35.12%的笋壳提取物粉末。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号