首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Ceramics International》2022,48(1):776-783
High-performance lead-free dielectric containers have excellent energy storage performance such as higher power density and energy density. While being eco-friendly materials, lead-free dielectric materials are more suitable for pulse power systems than other dielectric materials. In this study, Ta5+and Bi3+ ions were introduced into the A site and B site of the NaNbO3 matrix. The introduction of Bi3+ ions induced the formation of a vacancy in the A site, yielding Na(1-3x)BixNb0.85Ta0.15O3 (NBNT, x = 0.05, 0.08, 0.11, 0.14) ceramics. The recoverable energy density (Wrec) and the energy storage efficiency (η) were highest for the Na0.67Bi0.11Nb0.85Ta0.15O3 ceramic, with values of 3.37 J/cm3 and 89% respectively. Batteries employing the Na0.67Bi0.11Nb0.85Ta0.15O3 ceramic achieved a current density of 830.4 A/cm2, an energy density of 49.8 MW/cm3 and 60.2 ns discharge time. These results show that the Na0.67Bi0.11Nb0.85Ta0.15O3 ceramic is an effective energy storage material with broad application prospects.  相似文献   

2.
Using urea, boric acid and polyethylene glycol (PEG) as auxiliary reagents, the novel red emitting phosphors (Sr0.85Zn0.15)3(PO4)2:Eu3+ have been successfully synthesized by a modified solid-state reaction. The material has potential application as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). The dependence of the properties of (Sr0.85Zn0.15)3(PO4)2:Eu3+ phosphors upon urea, boric acid and the PEG concentration and the quadric sintered temperature were investigated. The crystallization and particle sizes of (Sr0.85Zn0.15)3(PO4)2:Eu3+ have been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The results show that the boric acid, urea and the PEG were effective in improving the fluorescent intensity of (Sr0.85Zn0.15)3(PO4)2:Eu3+ and the optimum molar ratio was 0.1, 8 and 0.021, respectively.  相似文献   

3.
Perovskite-structured Pb0.6Bi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics was reported with high Curie temperature TC of 705 °C and tetragonality of c/a = 1.10, promising for high temperature applications with large piezoelectric anisotropy. In this paper, it was experimentally demonstrated to ease poling processing and enhance piezoelectricity through substituting lead with calcium of Pb0.6?xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3. For the x = 0.18 sample, electromechanical coupling factor ratio of kt/kp  ∞, dielectric constant of 380, piezoelectric coefficient d33 of 80 pC/N, mechanical quality factor Qm of 50 and Curie point TC of 237 °C were obtained, which exhibits better piezoelectric performance than the (Pb0.76Ca0.24)(Ti0.96(Co0.5W0.5)0.04)O3. The enhanced piezoelectric response was analyzed with relation to the reduction of tetragonality and Curie temperature.  相似文献   

4.
《Ceramics International》2023,49(1):716-721
Ca1.15RE0.85Al0.85Ti0.15O4 (RE = Nd, La, Y) ceramics were prepared by a reaction sintering method. The sintering behavior, phase composition, microstructure and microwave dielectric performances of ceramics were investigated. X-ray diffraction patterns illustrated that both the Ca1.15Nd0.85Al0.85Ti0.15O4(CNAT) and Ca1.15Y0.85Al0.85Ti0.15O4(CYAT) ceramics are single-phase structures, and the Ca1.15La0.85Al0.85Ti0.15O4(CLAT) ceramic contain LaAlO3 and CaO phases. The apparent morphology and elemental distribution of the ceramic samples were analyzed by using scanning electron microscope and energy dispersive spectrometer. When the sintering temperature is 1500 °C, the CNAT and CYAT ceramics have the best microwave dielectric properties with εr = 19.2, Q × f = 74924 GHz, τf = ?1.21 ppm/°C and εr = 17.5, Q × f = 27440 GHz, τf = ?5.79 ppm/°C, respectively. And the best microwave dielectric properties of εr = 17.5, Q × f = 22568 GHz, τf = ?14.69 ppm/°C were obtained for the CLAT ceramic sintered at 1525 °C. The reaction sintering method provides a low-cost, economical and straightforward method for the preparation of the Ca1.15RE0.85Al0.85Ti0.15O4 (RE = Nd, La, Y) ceramics, which has promising potential for application.  相似文献   

5.
Iron-based oxides are considered as promising consumable anode materials for high temperature pyroelectrolysis. Phase relationships, redox stability and electrical conductivity of Fe3?xAlxO4 spinels were studied at 300–1773 K and p(O2) from 10?5 to 0.21 atm. Thermogravimetry/XRD analysis revealed metastability of the sintered ceramics at 300–1300 K. Low tolerance against oxidation leads to dimensional changes of ceramics upon thermal cycling. Activation energies of the total conductivity corresponded to the range of 16–26 kJ/mol at 1450–1773 K in Ar atmosphere. At 1573–1773 K and p(O2) ranging from 10?5 to 0.03 atm, the total conductivity of Fe3?xAlxO4 is nearly independent of the oxygen partial pressure. The conductivity values of Fe3?xAlxO4 (0.1  x  0.4) at 1773 K and p(O2) ~10?5 to 10?4 atm were found to be only 1.1–1.5 times lower than for Fe3O4, showing high potential of moderate aluminium additions as a strategy for improvement of refractoriness for magnetite without significant deterioration of electronic transport.  相似文献   

6.
《Ceramics International》2022,48(13):18730-18738
A series of new negative temperature coefficient (NTC) thermal materials based on (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 (0.00 ≤ x ≤ 0.20) ceramics were synthesized by a solid-state method. X-ray diffraction, scanning electron microscope and X-ray photoelectron spectroscopy were used to demonstrate the crystal structure, morphology, and composition of the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics, which were composed of solid solution based on the BaTiO3 phase. The average grain size of doped ceramic samples experienced the process of first decreasing and then increasing. The doping of Ce has reduced the sintering temperature. The temperature-dependent resistance analysis revealed that with the change of doping amount x, the thermal constant B300/1200 (1.21 × 104–1.13 × 104 K) and the activation energy Ea300/1200 (0.9777–1.0471eV) was initially increased to maximum values at x = 0.05, followed by the decreasing when x > 0.05. It has been established that the concentration of oxygen vacancies is affected by the transition between Ce4+ and Ce3+ provided by high levels of Ce doping. (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics exhibited excellent negative temperature characteristics in the range of 300–1200 °C. Moreover, the temperature resistance linearity was improved after samples were aged. Hence, the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics were regarded as a promising material for high-temperature NTC thermistors in a wide temperature range.  相似文献   

7.
Na3Zr2Si2PO12 (NZSP) solid-state electrolyte is considered one of the most promising solid-state electrolyte because of their excellent electrochemical and thermal stability. Even though, the low conductivity of NZSP solid-state electrolytes hinders practical application. Therefore, an anions/cations co-assisting strategy is proposed by introducing the Zn2+ and F. The influence of adding different amounts of Zn2+ and F on the Na+ conductivity of NZSP was investigated computationally and experimentally. The Zn2+/F co-assisting (Na3.3Zr1.85Zn0.15Si2PO12) solid-state electrolyte exhibits the ionic conductivity of 0.722 mS cm−1 at 30 °C, and the activation energy of ∼0.237 eV. Its applicability in a solid-state battery is tested, and the assembled Na/Na3V2(PO4)3 (NVP) battery exhibits an outstanding electrochemical performance of 98.4% capacity retention after being cycled at 0.5 C. Moreover, DFT calculations also have been used to demonstrate the effect of doping on the crystal structure and space migration energy barrier. This research provides new ideas for improving the electrochemical properties of inorganic solid electrolytes.  相似文献   

8.
The ac conductivity of Pb5Al3F19 between 293 and 743 K has been analyzed within a combined complex impedance, modulus and permittivity formalism. The antiferroelectric phase IV to ferroelastic phase III, and the phase III to paraelastic phase II, transitions have been characterized; the latter is shown to be accompanied by higher F ion mobility above T=368±5 K. A new dielectric anomaly observed iso-chronously in ε′ (f,T) at 670 K corresponds to an expected, but hitherto unobserved, transition from phase II to the paraelectric prototype phase I of Pb5Al3F19.  相似文献   

9.
Novel stablized green Ni0.15MgxAl2(0.85-x)Ti1.15+xO5 (0 ≤ x ≤ 0.25) pigments were prepared by solid-state method using Ni2O3 as colorant and Mg(CH3COO)2‧4H2O as auxiliary stabilizer. The synthesised pigments were characterized via XRD, XPS, SEM, TEM, UV-Vis, and automatic colorimeters. The results show that Mg-doping increases the oxygen vacancies, resulting in a positive shift of the binding energy of Ni2+ irons. The formation of Ni0.15MgxAl2(0.85-x)Ti1.15+xO5 solid solution greatly increases the energy transfer energy and shifts the emission to lower wavelengths (530 nm), corresponding to the visible diffuse reflection of green light. The chromaticity of the pigment changed little (L*=72.51, a*=−18.16, b*=20.94) at 1200 ℃ for 10 h, showing excellent thermal stability. The properties especially excellent thermal stability makes it promising novel green pigments in ceramic industry application.  相似文献   

10.
Cordierite-based dielectric ceramics with a lower dielectric constant would have significant application potential as dielectric resonator and filter materials for future ultra-low-latency 5G/6G millimeter-wave and terahertz communication. In this article, the phase structure, microstructure and microwave dielectric properties of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 (0 ≤ x ≤ 0.3) ceramics are studied by crystal structure refinement, scanning electron microscope (SEM), the theory of complex chemical bonds and infrared reflectance spectrum. Meanwhile, complex double-ions coordinated substitution and two-phase complex methods were used to improve its Q×f value and adjust its temperature coefficient. The Q×f values of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 single-phase ceramics are increased from 45,000 GHz@14.7 GHz (x = 0) to 150,500 GHz@14.5 GHz (x = 0.15) by replacing Al3+ with Zn2+-Mn4+. The positive frequency temperature coefficient additive TiO2 is used to prepare the temperature stable Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 composite ceramic. The composite ceramic of Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 (8.7 wt% ≤ y ≤ 10.6 wt%) presents the near-zero frequency temperature coefficient at 1225 °C sintering temperature: εr = 5.68, Q×f = 58,040 GHz, τf = ?3.1 ppm/°C (y = 8.7 wt%) and εr = 5.82, Q×f = 47,020 GHz, τf = +2.4 ppm/°C (y = 10.6 wt%). These findings demonstrate promising application prospects for 5 G and future microwave and millimeter-wave wireless communication technologies.  相似文献   

11.
The hydrothermal processing of ultrafine Pb1·88(Zn0·3Nb1·25)O5·305 and Ba(Mg0·33Nb0·67)O3 powders as well as their sintering behavior at 1000°C were investigated. The morphological analyses on nanometric powders indicated the presence of mesopores in micrometric agglomerates with open cylindrical pores. High dielectric constants were observed, showing normal frequency dispersion and an intrinsic ac relaxation, relatively masked by low frequency conductivity. The sintered ceramics presented lower dielectric permittivities than the hydrothermal powders, and a classical Cole–Cole plot could be obtained for the Pb1·88(Zn0·3Nb1·25)O5·305 electroceramic for frequencies above 103 Hz.  相似文献   

12.
In the present work, a high quality (Q) Ca1.15Sm0.85Al0.85Ti0.15O4 (CSAT) ceramic was prepared via reaction sintering (RS) method. The phase structure, surface morphology, packing fraction (PF), and valence bond of the ceramic were systematically investigated. By studying the X-ray diffraction (XRD) pattern of the ceramic, it was determined to exhibit a single-phase tetragonal structure with the dimensions of a = b = 3.6943(13)Å and c = 12.0320(23)Å and volume of V = 164.22(10) Å3. The influence of the intrinsic quality loss factor on the Q × f value was investigated by calculating the PF. Simultaneously, the bond valence of the samarium (Sm) sites was evaluated to elucidate the relationship with the temperature coefficient of resonant frequency (τf). The CSAT ceramic was sintered at 1550 °C for 6 h and exhibited exceptional characteristics in terms of the relative dielectric constant (εr) = 17.5, quality factor (Q × f) = 66700 GHz, and τf = ?6.93 ppm/°C. These results highlighted the excellent suitability of the RS method for preparing CSAT ceramics with outstanding microwave dielectric properties.  相似文献   

13.
Lead-free (1-x)BiFeO3-x(0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3) [(1-x)BF-x(BT-BSZ), x=0.45-0.7] ceramic samples were prepared by solid phase sintering. It is revealed that the pure single-phase perovskite structure can be obtained in samples with x ≥ 0.6. With increasing x, the measured ferroelectric hysteresis loop becomes gradually slimmed in accompanying with reduced remnant polarization, and a clear ferroelectric-relaxor transition at x = 0.65 is identified. Furthermore, the measured electric breakdown strength can be significantly enhanced with increasing x, and the optimal energy storage performance is achieved at x = 0.65, characterized by the recoverable energy storage density up to ≈3.06 J/cm3 and energy storage efficiency as high as ≈92 %. Excellent temperature stability (25°C–110°C) and fatigue endurance (>105 cycles) for energy storage are demonstrated. Our results suggest that the BF-based relaxor ceramics can be tailored for promising applications in high energy storage devices.  相似文献   

14.
The ferroelectric properties of bismuth pyrostannate Bi2(Sn0.85Cr0.15)2O7 in the high-temperature region are established. The linear thermal expansion coefficient, electrical resistance, impedance, I?V characteristics, capacitance, loss-angle tangent, charge, and thermopower of the investigated material are measured in the temperature range of 300?700 K at frequencies of 102?106 Hz. Anomalies of the thermal expansion coefficient and hodograph spectrum variation in the region of polymorphic phase transitions are observed. The high resistance and change of the hopping conductivity for the tunnel-emission are found. The hysteresis in the electric field dependence of polarization is established. The change in the thermopower sign with temperature is revealed. The obtained experimental data are explained in the framework of the model of migration polarization by charged chromium ions.  相似文献   

15.
The layered oxyselenides BiCuSeO was recently discovered as potential thermoelectric. Our result reveals that the substitute for atom Bi3+ by Pb2+ & Mg2+ in (Bi2O2)2− play an important role in electrical transport properties. The maximum electrical conductivity obtained is 460 Scm−1 for Bi0.84Mg0.10Pb0.06CuSeO at RT, highly above the 15 Sm−1 for BiCuSeO. In synergy with low thermal conductivity (0.6-0.4 Wm−1 K−1) and large thermopower (300-500 μVK−1), the highest ZT is achieved about 0.80 at 873 K for Bi0.88Mg0.06Pb0.06CuSeO.  相似文献   

16.
Dielectric and impedance spectroscopies were employed to study the electrical behavior of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (abbr. BCTZ) lead‐free ceramic. The dielectric properties versus dc bias electric field experiment revealed high dielectric tunability (> 65%) as well as figure of merit (> 27) at 10 kHz and room temperature. At elevated temperature range, a dielectric loss peak was observed and verified to be correlate of oxygen vacancy relaxation. The impedance spectra studies indicate that the ceramic is a mixed ionic conductor of p‐type nature at the paraelectric phase and, the grain and total conductivity at 600°C reaches 6.0 × 10?5 and 2.0 × 10?5 S/cm, respectively.  相似文献   

17.
《Ceramics International》2023,49(1):669-676
In this work, silver-doped La0.85-xSr0.15AgxMnO3 (LSAMO, 0.05 ≤ x ≤ 0.20) polycrystalline ceramics were prepared by the sol-gel method. The experimental characterization of ceramics revealed that Ag ions were bounded with the lattice matrix. The resistivity and the corresponding peak temperature coefficient (TCR) of LSAMO ceramics were systematically tuned by changing the Ag dopant content. Adjusting the proportion of Ag enabled one to vary the metal-insulator transition temperature (TMI) for LSAMO specimens in a wide range, and their peak resistivity temperature (Tp) was increased from 299.6 to 335.7 K. At the same time, the peak TCR value achieved its maximum of 15.2% K?1 at the doping molar ratio x of 0.15 and the peak resistivity temperature (Tk) of 294.1 K. In addition, the electrical transport was described in the context of the small polaron hopping (SPH) model and the phenomenological percolation model (PP) over the metal-insulator transition region. Under the combined action of the Jahn-Teller (JT) effect, the double exchange (DE) mechanism and the PP model, LSAMO ceramics possessing high TCR at room temperature were obtained by varying the amount of Ag doping. The observed properties suggest LSAMO material can be used in advanced uncooled infrared bolometers.  相似文献   

18.
《Ceramics International》2017,43(7):5723-5727
The thermoelectric properties of Bi2Ba2Co2Oy and Bi1.975Na0.025Ba2Co2Oy+x wt% carbon nanotubes (CNT; x=0.00, 0.05, 0.10, 0.15, 0.5, and 1.0) ceramic samples synthesised by the solid-state reaction method were investigated from 300K to 950K. Na doping with a small amount played an important role in reducing resistivity and slightly reduced the Seebeck coefficients and the thermal conductivity. The CNT dispersant increased resistivity, but the thermal conductivity was reduced remarkably. In particular, the Bi1.975Na0.025Ba2Co2Oy+1.0wt% CNT sample exhibited an ultralow thermal conductivity of 0.39 W K−1 m−1 at 923K. This was attributed to the point defects caused by Na doping and the interface scattering caused by the CNT dispersant. The combination of Na doping and CNT dispersion had better effects on thermoelectric properties. The Bi1.975Na0.025Ba2Co2Oy+0.5wt% CNT sample exhibited a better dimensionless figure of merit (ZT) value of 0.2 at 923K, which was improved by 78.2%, compared with the undoped Bi2Ba2Co2Oy sample.  相似文献   

19.
Dielectric ceramics with relaxor characteristics are promising candidates to meet the demand for capacitors in next-generation pulse devices. In this work, Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT)-based lead-free ceramics with an ultrahigh recoverable energy storage density (Wrec) were designed and fabricated by introducing the relaxor end-member of Bi(Zn2/3Ta1/3)O3 (BZT). The addition of BZT disrupted the ferroelectric (FE) long-range order and triggered an FE-to-relaxor FE (RFE) phase, leading to the formation of locally polar nano-regions (PNRs) and significantly inhibiting grain growth. Meanwhile, the presence of PNRs with good thermal stability improved the temperature stability of both the dielectric constant (ε') and Wrec. More importantly, the breakdown electric field strength was significantly improved up to ∼640 kV/cm, resulting in an ultrahigh Wrec of ∼7.11 J/cm3 for the 8%BZT doped BCZT (BCZT-BZT8) ceramic. Furthermore, the BCZT-BZT8 ceramic exhibited excellent charge/discharge performances (CD ∼ 458.4 A/cm2, PD ∼ 50.4 MW/cm3, WD ∼ 1.354 J/cm3, t0.9 ∼ 320 ns) with good thermal stability in the temperature range of 298–373 K. The defect chemistry of the BCZT-BZT8 was explored using electron paramagnetic resonance (EPR) spectroscopy which revealed an EPR signal (g ∼ 1.955), associated with oxygen vacancies. The above findings indicate that the novel composition of BCZT-BZT8 has great prospects in energy storage capacitor applications.  相似文献   

20.
《Ceramics International》2020,46(8):11492-11498
(1-x) (K2O–Na2O–2Nb2O5)-x (2BaO–Nb2O5–2SiO2) glass-ceramics with x = 0.10, 0.15, 0.20, 0.25 have been successfully prepared by traditional melting method. XRD and microstructure analysis demonstrate that all glass-ceramics are crystallized into uniform Na0.9K0.1NbO3 and K2(NbO)2(Si4O12) ferroelectric crystalline phase. Increasing x promotes the formation of Ba2NaNb5O15 phase with a tungsten bronze structure. Raman and complex impedance data confirmed that Ba2+ is introduced to repair the disruption of the glass network and make carrier migration difficult when x = 0.15. Thus, the x = 0.15 glass-ceramic sample possesses a maximum calculated energy storage density of 2.32 J/cm3 under 820 kV/cm because of a high degree of polymerization (DOP) glass network structure. Moreover, the pulsed discharge-charge tests are carried out to evaluate actual energy storage performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号