首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
采用传统固相法制备Na_(0.25)K_(0.25)Bi_(2.5)Nb_2O_9-x mol%CaTiO_3(NKBN-CT,x=0,0.7,1.0,2.0,3.0,4.0)铋层状无铅压电陶瓷材料。本文系统研究了CaTiO_3掺杂对Na_(0.25)K_(0.25)Bi_(2.5)Nb_2O_9基陶瓷物相结构、微观结构以及电性能的影响。结果表明:所有陶瓷材料样品均为单一的铋层状结构。随着CaTiO_3掺量的增加,Curie温度T_c呈增高趋势(653~665°C),压电常数d_(33)先增大后减小;当x=1.0时,样品的电性能达到最佳值,即d_(33)=25pC/N,介电损耗tanδ=0.42%,机械品质因数Q_m=2845,T_c=659℃。退极化研究表明NKBN-CT陶瓷样品的压电性能具有良好的热稳定性,说明CaTiO_3掺杂改性Na_(0.25)K_(0.25)Bi_(2.5)Nb_2O_9基系列陶瓷具有高温领域应用的潜力。  相似文献   

2.
采用传统固相法制备Na0.5Bi2.5Ta2-xWxO9 (NBTO-x,0≤x≤0.05)无铅压电陶瓷,研究W6+掺杂对NBTO陶瓷结构和电学性能的影响.XRD结果显示,所有陶瓷样品均生成了m=2的铋层状结构化合物,随着掺杂量的增加,样品的正交畸变先减小后增大;W6+掺杂提高了样品的压电与铁电性能,当x=0.03时,...  相似文献   

3.
采用固相法制备了Na0.25K0.25Bi2.5Nb2O9-0.4wt%Cr2O3-xwt%CeO2(x=0.00~1.00)高温无铅压电陶瓷,研究了Ce掺杂对该系列陶瓷微观结构及电性能的影响。结果表明所有样品均为单一的铋层状结构陶瓷,适量的Ce掺杂明显改善了陶瓷的压电与铁电性能,降低了陶瓷的电导率和介电损耗。当掺杂量x=0.50时,样品具有最佳性能:d33=27 pC/N,tanδ=0.09%,kp=7.97%,Qm=2637,Tc=656℃,Ec=46 kV/cm和Pr=4.4μC/cm2,表明该材料在高温领域内具有良好的应用前景。  相似文献   

4.
以传统固相烧结合成法制备出Co_2O_3掺杂的无铅压电陶瓷材料Ba_(0.85)Ca_(0.15)Zr_(0.1)Ti_(0.9)O_3-xCo_2O_3(BCZT-xCo,x=0~0.15 wt%)。通过X射线衍射(XRD)和扫描电子显微镜(SEM)以及其他分析方法研究Co_2O_3掺杂量对制备的BCTZ无铅压电陶瓷的压电性能、介电性能、相组成以及微观结构的影响。结果表明,所有样品均具有纯钙钛矿相结构。随着Co_2O_3掺杂量的增加,晶粒尺寸、介电损耗tanδ、压电系数d_(33)和平面机电耦合系数k_p逐渐减小,而介电常数ε_r逐渐增加。当x=0 wt%时,BCZT-xCo无铅压电陶瓷具有最佳压电性能:d_(33)=420 pC/N,k_p=40%;x=0.15%时,BCZT-xCo无铅压电陶瓷具有最佳介电性能:ε_r=5,100,tanδ=1.4%。  相似文献   

5.
采用固相法制备了Ce和Sr复合掺杂的Bi4Ti2.92Nb0.08O12.04(BTN+0.5x%CeO2+0.5x%SrCO3,0≤x≤1.5,质量分数)铋层状高温无铅压电陶瓷,研究了不同含量的Ce和Sr掺杂对BTN系陶瓷微观结构及电性能的影响。结果表明:样品均为单一的铋层状结构相,Ce和Sr的引入明显提高了陶瓷的压电性能。当掺杂量x=0.9时,样品具有最佳性能:压电常数d33=29pC/N,平面机电耦合系数kp=8.77%,介电损耗tanδ=0.13%,剩余极化强度Pr=15.87μC·cm-2和Curie温度TC=627℃。此外,该组分陶瓷样品具有良好的压电稳定性,表明该材料在高温领域下具有良好的应用前景。  相似文献   

6.
选取传统高温固相反应合成法制备出Bi_2O_3掺杂的无铅压电陶瓷材料Ba_(0.85)Ca_(0.15)Zr_(0.08)Ti_(0.92)O_3-xBi_2O_3(BCZT-x Bi,x=0~0.15)。采用扫描电子显微镜、准静态压电常数测试仪等一系列检测手段,探讨了Bi_2O_3掺杂对BCZT基无铅压电陶瓷微观组织和电学性能产生的作用,从SEM图像得知,陶瓷的晶粒尺寸随着Bi_2O_3掺杂量的增多先逐渐变小后略微有所增大,XRD图谱则表明,掺杂量不等的Bi~(3+)均能够弥散进入钛酸钡晶格中,能完整固溶于BCZT陶瓷,并且材料具有典型的钙钛矿相结构。当Bi_2O_3掺杂量为0.15 mol%时,此无铅压电陶瓷材料拥有较好的介电性能,介电损耗tanδ的值仅是1.2%,介电常数ε_r的值是5100;当没有掺杂Bi_2O_3时,此陶瓷的压电性能最优,压电系数的值d_(33)=386 p C/N,机电耦合系数的值K_p=44.8%。  相似文献   

7.
以碳酸钡、二氧化锆、二氧化钛等为原料,以Sm_2O_3为掺杂剂和掺杂量为0.5mol%Y_2O_3的锆钛酸钡陶瓷材料为研究对象,采用传统固相法分别于1250℃、1280℃、1300℃、1330℃下制备了陶瓷样品,研究Sm_2O_3加入物对体系介电性能和微观形貌的影响。结果表明,Sm~(3+)掺杂后的陶瓷样品主晶相不变,均为钙钛矿结构;掺杂能起到改善介电常数与介电损耗的作用,随着Sm_2O_3掺杂量的增加,陶瓷样品的介电常数最高至6623.49,而介电损耗最低至0.0145;掺杂还可以改变BZT陶瓷的介电性能,居里温度向室温方向移动,当Sm_2O_3掺杂量x=0.005 mol时,陶瓷样品的介电性能最好。  相似文献   

8.
采用固相法制备Er~(3+)掺杂铋层状结构陶瓷Bi_(4-x)Er_xTi_3O_(12)-4%Nb_2O_5(BITN-xEr,0≤x≤0.25)。研究了不同Er~(3+)含量对样品的结构、上转换发光与电性能的影响。XRD表明,所有样品均为正交相铋层状结构,并存在第二相Bi_2Ti_2O_7。Raman光谱表明,Er~(3+)取代了类钙钛矿层A位中的Bi~(3+),导致Ti06八面体的结构畸变。在980nm近红外光源激发下,所有掺杂样品均存在2个绿光和1个红光发射峰,当x=0.20时样品荧光强度达到最佳。随着掺杂量x的增加,Curie温度逐渐升高,压电系数(d_(33))和剩余极化强度(P_r)逐渐下降。当温度升高到500℃时,BITN-O.10Er样品仍有较高的压电活性(d_(33)=21 pC/N)和较好的热稳定性,表明该材料是一种具有潜在应用价值的多功能材料。  相似文献   

9.
用固相法研究了钨离子(W6 )掺杂对铋层状钛酸铋钙镧[Ca0.7La0.3Bi4(Ti1-xWx)4O15,CLBTWx]陶瓷的铁电性能、介电性能和压电性能的影响,得到了W6 掺量与铋层状CLBTWx陶瓷性能的关系.用X射线衍射和扫描电镜研究了W6 掺量对铋层状CLBTWx陶瓷微观结构和物相的影响,探讨了W6 掺杂改性的机理.结果表明:随着W6 掺量的增加,CLBTWx陶瓷的介电常数(ε)先增大后减小;介质损耗(tanδ)先减小后增大;压电应变常数(d33)先增大后减小;剩余极化强度(Pr)先增大后减小然后再增大再减小;矫顽场(Ec)变化规律与Pr的相同.当W6 掺量为0.025mol时,可得到综合性能好的无铅铋层状CLBTWx陶瓷,其烧结温度为1 120~1 140℃时,CLBTWx陶瓷的ε=183.15;tanδ=0.00446;d33=14×10-12C/N;2Pr=26.7μC/cm2;2Ec=220kV/cm.该类材料适合于制备铁电随机存取存储器和高温高频压电器件.W6 掺杂从生成钙空位或铋空位、形成焦绿石相、促进陶瓷致密化、偏析晶界影响陶瓷晶粒的均匀生长等方面来影响铋层状CLBTWx陶瓷性能和结构.  相似文献   

10.
采用传统固相烧结法,制备了CaBi4Ti(1-x)NbxO1(5x=0.00-0.05,CBT-N)系铋层状结构无铅压电陶瓷。研究了Nb5+掺杂对CBT压电陶瓷压电与介电性能的影响。研究结果表明:添加Nb5+离子,改善了CBT陶瓷的烧结特性,提高了瓷体的致密度。Nb2O5的引入降低了CBT系列陶瓷的介质损耗,改善了陶瓷的压电与介电性能。当掺入量x=0.04(CaBi4Ti0.96Nb0.04O15)时制备的CBT基铋层状压电陶瓷具有优异的压电性能:d33=14pC/N,Qm=3086,εr=212,tanδ=0.0041,kt/kp=1.681。  相似文献   

11.
采用传统固相法制备了Na_(0.25)K_(0.25)Bi_(2.5–x)Ho_xNb_2O_9(NKBN–x Ho~(3+),0.000≤x≤0.030)铋层状陶瓷,研究了Ho~(3+)掺杂对NKBN陶瓷结构、电学和上转换发光性能的影响。X射线衍射谱表明Ho~(3+)进入NKBN晶格形成了固溶体。随着Ho3+掺杂量的增加,NKBN陶瓷的晶粒尺寸降低,当x=0.020时,样品的压电和铁电性能均达到最佳:d_(33)=21.8pC/N2Pr=1.84μC/cm。(d_(33)为压电常数,Pr为剩余极化强度)所有样品在400℃均未出现明显的退极化现象,在高温下表现出良好的压电稳定性。在980 nm激光激发下,所有陶瓷样品均表现出上转换荧光发光特性,表明NKBN–x Ho~(3+)陶瓷在光电多功能材料领域具有潜在的应用价值。随着极化电压的增加,陶瓷样品的晶格结构对称性提高,上转换荧光发光强度降低。  相似文献   

12.
采用固相法制备CeO2掺杂改性0.85Bi4Ti3O12-0.15LiNbO3(BTO-LN)铋层状压电陶瓷。借助于X射线衍射和扫描电子显微镜研究了CeO2掺量与BTO-LN陶瓷晶体结构和电性能的关系。结果表明:所有陶瓷样品均为单一的正交相结构;随CeO2掺量的增加,陶瓷的晶粒尺寸变大,Curie温度TC由653℃下降到617℃;CeO2掺杂提高了样品的压电性能,压电常数d33随CeO2掺量的增加先增大后减小,相对介电常数εr表现出相反的变化趋势;当CeO2的掺入量为0.75%时,样品的电性能最佳,即d33=25pC/N,机械品质因数Qm=2 895,介电损耗tanδ=0.10%,TC=617℃。  相似文献   

13.
采用分步固相烧结工艺制备(1–x)SrBi_2Nb_2O_9–xN_(0.5)Bi_(0.5)TiO_3(SBN–NBT)铋层状结构复相无铅压电陶瓷。利用X射线衍射仪、扫描电子显微镜及介电和压电测试系统等对陶瓷样品的相结构、微观形貌和电性能进行表征。结果表明:样品均形成了钙钛矿结构(BLSF)相与铋层状结构相两相共存的复相结构,铋层状结构相随NBT引入量增多由SBN逐渐转变为2层与3层BLSF插层结构相,再转变为3层铋层状相。随着NBT组分增加,相变峰向高温移动,铁电–顺电相变峰值介电常数随之减小,相应的介电峰半高宽弥散度增大,铁电–顺电相变弥散程度增强。当x=0.4时,样品弥散因子γ达到1.95,表现出典型的弛豫铁电体相变特征;当x=0.1时,样品电性能达到最佳值:Curie温度TC、室温介电常数和d33分别达到474℃、177和13 p C/N。  相似文献   

14.
采用传统固相合成法制备了SrCaBi_(4-x)Er_xTi_5O_(18)(SCBT-xEr,x=0.00,0.02,0.04,0.06)无铅压电陶瓷,研究了Er~(3+)掺杂量对陶瓷物相、微观结构、电学性能及高温稳定性的影响。XRD表明,Er~(3+)掺杂并没有改变SCBT-xEr陶瓷的晶体结构,所有样品均为单一的铋层状结构;通过电学性能分析,随着Er~(3+)掺杂量的增加,在室温下介电常数先增加后减小,居里温度(T_c)逐渐减小。当x=0.02,烧结温度为1180℃时,陶瓷的综合性能最佳,压电常数(d33)=23 pC/N,居里温度(T_c)=427℃;当退火温度达到300℃时,压电常数(d_(33))依旧保持在20 pC/N左右,说明材料具有较好的温度稳定性,材料可以在300℃的高温环境中应用。  相似文献   

15.
采用固相法制备Na0.5Bi4.5Ti4O15+x%Co2O3+y%MnCO3(NBT-CM-x)(y=0.1x)铋层状无铅压电陶瓷,研究了Co、Mn共掺杂对Na0.5Bi4.5Ti4O15陶瓷显微结构和电性能的影响。结果表明:所有样品均为铋层状结构;Co、Mn共掺杂能促进陶瓷晶粒生长;随Co、Mn共掺杂量的增加,Curie温度TC逐渐升高(均在635℃以上);Cole-Cole图出现2个圆弧,表明存在晶粒和晶界效应;适量Co、Mn共掺杂提高了Na0.5Bi4.5Ti4O15陶瓷的压电常数d33、剩余极化强度Pr、机械品质因数Qm和相对介电常数εr,降低了直流电导率σDC和介电损耗tanδ。当x=3.0时,NBT-CM-x陶瓷的综合性能最佳:d33=24pC/N,Pr=11.70μC/cm2,Qm=3 117,εr=198,tanδ=0.19%,kp=9.9%,kt=14.7%,表明该陶瓷材料具有良好的高温应用前景。  相似文献   

16.
采用固相法制备Na_(0.25)K_(0.25)Bi_(2.5–x)Nd_xNb_2O_9(NKBN–xNd~(3+),0≤x≤0.40,x为摩尔分数)铋层状无铅压电陶瓷,研究了不同Nd~(3+)掺杂量对NKBN–x Nd陶瓷显微结构、电学性能的影响及NKBN–0.20Nd~(3+)陶瓷高温下的电导行为。结果表明:所有样品均为单一的铋层状结构;当Nd~(3+)的掺杂量x为0.02时,样品的晶粒尺寸减小并趋于均匀,致密度提高;适量的Nd~(3+)掺杂能降低样品的介电损耗,提高NKBN陶瓷的压电常数d33。NKBN–0.20Nd~(3+)陶瓷样品的电学性能最佳:压电常数d_(33)=24 p C/N,机械品质因数Q_m=2 449,tanδ=0.40%,2P_r=1.11μC/cm~2。NKBN–0.20Nd~(3+)样品的阻抗谱表明:在高温区域陶瓷的晶粒对电传导起主要作用,当温度高于600℃时,样品主要表现为本征电导,NKBN–0.20Nd~(3+)和NKBN的电导活化能分别为1.85和1.64 e V。  相似文献   

17.
采用固相法制备Na_(0.25)K_(0.25)Bi_(2.5–x)Nd_xNb_2O_9(NKBN–xNd^(3+),0≤x≤0.40,x为摩尔分数)铋层状无铅压电陶瓷,研究了不同Nd^(3+)掺杂量对NKBN–x Nd陶瓷显微结构、电学性能的影响及NKBN–0.20Nd^(3+)陶瓷高温下的电导行为。结果表明:所有样品均为单一的铋层状结构;当Nd^(3+)的掺杂量x为0.02时,样品的晶粒尺寸减小并趋于均匀,致密度提高;适量的Nd^(3+)掺杂能降低样品的介电损耗,提高NKBN陶瓷的压电常数d33。NKBN–0.20Nd^(3+)陶瓷样品的电学性能最佳:压电常数d_(33)=24 p C/N,机械品质因数Q_m=2 449,tanδ=0.40%,2P_r=1.11μC/cm^2。NKBN–0.20Nd^(3+)样品的阻抗谱表明:在高温区域陶瓷的晶粒对电传导起主要作用,当温度高于600℃时,样品主要表现为本征电导,NKBN–0.20Nd^(3+)和NKBN的电导活化能分别为1.85和1.64 e V。  相似文献   

18.
江向平  杨帆  陈超  涂娜 《硅酸盐学报》2014,(12):1501-1506
采用固相法制备CeO2掺杂改性0.85Bi4Ti3O12-0.15LiNbO3(BTO-LN)铋层状压电陶瓷。借助于X射线衍射和扫描电子显微镜研究了CeO2掺量与BTO-LN陶瓷晶体结构和电性能的关系。结果表明:所有陶瓷样品均为单一的正交相结构;随CeO2掺量的增加,陶瓷的晶粒尺寸变大,Curie温度TC由653℃下降到617℃;CeO2掺杂提高了样品的压电性能,压电常数d33随CeO2掺量的增加先增大后减小,相对介电常数εr表现出相反的变化趋势;当CeO2的掺入量为0.75%时,样品的电性能最佳,即d33=25pC/N,机械品质因数Qm=2 895,介电损耗tanδ=0.10%,TC=617℃。  相似文献   

19.
采用传统固相法制备(Na Bi)_(0.5-x)(KCe)_xBi_2Ta_2O_9(NBTO-x,0≤x≤0.15)无铅压电陶瓷,研究K/Ce离子含量对NBTO陶瓷结构和电学性能的影响。结果表明:所有陶瓷样品均生成了m=2的铋层状结构化合物,且未发现其他明显杂峰;随着K/Ce离子含量的增加,样品的Curie温度T_C逐渐降低;K/Ce离子掺杂提高了样品的压电性能,压电常数d_(33)随掺杂量提高呈现出先升高后降低趋势,当x=0.075时,样品的综合性能达到最佳:d_(33)=19.0 p C/N,Curie温度T_C=735℃,介电损耗tanδ=0.137%,体积密度r=9.113 g·cm~(-3);NBTO (x=0.075)陶瓷在600℃退火2 h,其d_(33)仍高达17.8 p C/N,约为初始值(d_(33)=19.0 p C/N)的93.7%,表现出良好的温度稳定性。  相似文献   

20.
采用传统固相法分别于1250℃、1280℃、1300℃、1330℃下制备了BaZr_(0.1)Ti_(0.9)O_3+xmol%Fe_2O_3(0≤x≤1.25)陶瓷样品。XRD结果表明,Fe~(3+)掺杂后的陶瓷样品均为钙钛矿结构。SEM表明,掺杂Fe~(3+)后陶瓷的晶粒尺寸减小。随着掺杂量的增加,陶瓷样品的体积密度ρv和介电常数ε先增大后减小,介质损耗tanδ先减小后增大。1300℃烧结,x=1.00%的陶瓷样品介电性能最好,ρv=6.03 g/cm3,ε=4560,tanδ=0.004。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号