首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硼热还原法制备LaB6粉末   总被引:8,自引:1,他引:7  
研究了采用硼热还原法制备LaB6粉末的反应合成工艺,La2O3-B系反应热力学分析表明,气体分压对LaB6的形成有重要影响,减小气体分压可以明显降低LaB6的合成温度,结合DTA测定结果,确定了制备LaB6粉末的合成温度,同时,对不同温度的和保温时间条件下所生成的LaB6粉末的相组成、颗粒尺寸与形貌以及纯度进行了测试分析,实验结果表明,La2O3-B系制备LaB6粉末的优化工艺是真空度133Pa,1923K保温6h,所合成的LaB6粉末平均粒径为6um,纯度达99.2%,颗粒形态比较规整,多数呈氨似团块状。  相似文献   

2.
Adding SiC directly to MgO–C refractories possesses the disadvantages of low dispersion and interfacial bonding strength. Herein, the in situ synthesized SiC was introduced into the MgO–SiC–C refractories to maintain the original excellent performance of MgO–C refractories and reduce the carbon dissolution in molten steel. With the increase of Si and C content in raw materials, the morphology of SiC changed from whisker to network, whose growth mechanism was vapor–solid and vapor–liquid–solid. The network structure and uniform distribution of SiC improved the thermal shock resistance of MgO–SiC–C refractories. According to the analysis of molecular dynamics simulation by Materials Studio software, SiC strengthened the relationship between periclase and graphite to enhance the structure of the compound.  相似文献   

3.
The creep behavior of SiC/C/SiC microcomposites at 1200–1400 °C and 140–450 MPa was investigated in the presence and absence of matrix cracking. The microcomposites consisted of single Hi Nicalon or Carborundum fibers coated with a CVD carbon interlayer and a CVD SiC matrix. Since the fibers and matrix had been examined by the identical experimental technique, direct comparisons of the creep of the composite and of the constituents were performed. The creep of uncracked microcomposites was successfully modeled using a simple rule of mixtures algorithm. When matrix cracks were present, the microcomposites were modeled using a series composite consisting of intact microcomposite, exposed fiber at the matrix crack, and the debonded region in between. Trends for behavior with respect to the various mechanical and structural parameters that control creep are presented.  相似文献   

4.
TiB2–AlN–SiC (TAS) ternary composites were prepared by reactive hot pressing at 2000°C for 60 min in an Ar atmosphere using TiH2, Si, Al, B4C, BN and C as raw powders. The phase composition was determined to be TiB2, AlN and β-SiC by XRD. The distribution of elements Al and Si were not homogeneous, which shows that to obtain a homogeneous solid solution of AlN and SiC in the composites by the proposed reaction temperatures higher than 2000°C or time duration longer than 60 min are needed. The higher fracture toughness (6·35±0·74 MPa·m1/2 and 6·49±0·73 MPa·m1/2) was obtained in samples with equal molar contents of AlN and SiC (TAS-2 and TAS-5) in the TAS composites. The highest fracture strength (470±16 MPa) was obtained in TAS-3 sample, in which the volume ratio of TiB2/(AlN+SiC) was the nearest to 1 and there was finer co-continuous microstructure. ©  相似文献   

5.
Using plane-view and cross-sectional Raman spectroscopy, polarized infra-red spectroscopy and photothermal spectroscopy, the structure, composition and internal stress of 6H–SiC crystal implanted sequentially with N+ and Al+ ions to form a (SiC)1−x(AlN)x solid solution were studied non-destructively and self-consistently. The optimum implantation temperature for the synthesis of a (SiC)1−x(AlN)x solid solution with a 6H structure was found to be 600 °C.  相似文献   

6.
High energy (MeV) and low dose aluminum implants were performed in p-type 6H–SiC at room temperature. The material was characterized by means of Rutherford backscattering in channeling configuration and confocal micro-Raman scattering. Information on the damage-induced changes in the absorption coefficient of the implanted layer can be extracted from the depth profiling of the first-order Raman intensity of the undamaged portion of the sample, using a confocal microprobe set-up. Optical modeling indicates the formation of two layers: an outermost, low absorbing, layer with thickness proportional to the energy of the bombarding ions; and a deeper, more damaged, and absorbing layer.  相似文献   

7.
Gaseous plasma pretreatments and surface derivatization using silane coupling agents (SCA) have been used to enhance the adhesive bonding of an epoxy to SiC-coated Si wafers (SiC/Si). The surface modification approaches included 1) an SCA treatment using 3-aminopropyltriethoxysilane (APS) or 3-glycidoxypropyltrimethoxysilane (GPS) and 2) an oxygen plasma pretreatment followed by a silane treatment. Durability was evaluated by immersing epoxy-coated SiC/Si samples in aqueous solutions at various pHs at 60°C for selected times. Adhesion durability for the epoxy-coated SiC/Si systems was qualitatively evaluated by visual inspection to identify debonding and quantitatively evaluated with a probe test to determine the critical strain energy release rate, G c . Durability via either test approach varied as a function of surface treatment in this manner: oxygen plasma treatment plus silane modification > silane treated > no treatment. X-ray photoelectron spectroscopic characterization of surfaces was carried out following the surface treatments and after complete adhesion failure in the durability tests. The XPS results suggested that improved performance was due to plasma cleaning and modification of the substrate surface, promotion of silane surface interaction, and the formation of a thicker oxide layer.  相似文献   

8.
Fracture toughness and failure mechanism of directionally solidified eutectic composites LaB6–ZrB2 and LaB6–(Zr0,9Ti0,1)B2 were investigated. The addition of Ti increases the cohesion strength of the matrix–fiber interface, causes redistribution of stresses in the whole composite, and thus influences the mechanism of crack propagation.Fracture toughness of composites was determined by Brazilian test. The central crack was introduced in the plane, parallel to the axis of the eutectic rod, in direction, perpendicular to the axis. Such experimental setup enables to investigate the interaction of crack with fiber–matrix interface and eliminates the effect of other factors on K1C.The present investigation shows that Ti additions to LaB6–ZrB2 result in up to 25% increase of fracture toughness of the composites.  相似文献   

9.
C/C–SiC composites were prepared by molten infiltration of silicon powders, using porous C/C composites as frameworks. The porosities of the C/C–SiC composites were about 0.89–2.8 vol%, which is denser than traditional C/C composites. The ablation properties were tested using an oxyacetylene torch. Three annular regions were present on the ablation surface. With increasing pyrocarbon fraction, a white ceramic oxide layer formed from the boundary to the center of the surface. The ablation experimental results also showed that the linear and mass ablation rates of the composites decreased with increasing carbon fraction. Linear SiO2 whiskers of diameter 800 nm and length approximately 3 μm were formed near the boundaries of the ablation surfaces of the C/C–SiC composites produced with low-porosity C/C frameworks. The ablation mechanism of the C/C–SiC composites is discussed, based on a heterogeneous ablation reaction model and a supersaturation assumption.  相似文献   

10.
A SiC–AlN composite was fabricated by mechanical mixing of SiC and AlN powders, hot pressed under 40 MPa at 1950°C in Ar atmosphere. The object of this attempt was to achieve full density and a little solid solution formation. Fine microstructure and crack deflection behaviour are to improve the mechanical properties of the SiC–AlN composite. The bending strength and fracture toughness were achieved 800 MPa and 7·6 MPa m1/2 at room temperature, respectively. The fracture toughness of the SiC–AlN composite shows minimal change between room temperature and 1400°C. Post-HIP improves the surface densification of the SiC–AlN composite resulting in an increase of the strength and the ability to resist oxidization. The bending strength of SiC–AlN composite increases from 800 to 1170 MPa after HIP treatment for 1 h under 187 MPa at 1700°C in N2 atmosphere.  相似文献   

11.
SiC particulates were mixed with Ag–Cu–Ti powders to fabricate SiCP/Ag–Cu–Ti (SICACT) sheets by tape casting process, which were used to braze the sintered SiC ceramics with the structure of SiC/Ag–Cu–Ti foil/SICACT sheet/Ag–Cu–Ti foil/SiC. Microstructure and joining strength both at room temperature and at high temperature were characterized by electron probe X-ray microanalyzer, electron dispersive spectroscopy, transmission electron microscopy, and flexural strength test. The SiC particulates from the SICACT sheets were randomly distributed in the filler alloy matrix and reacted with Ti from the filler alloy. Reaction products TiC and Ti5Si3 were found in the interfacial reaction layer. With the increase in SiC particulates volume fraction, the joining strength at room temperature first increased, and then decreased, which was affected by both CTE mismatch and the thickness of the reaction layer. In addition, the joining strength of joints brazed using SICACT sheets at 600?°C can reach 197 MPa, which was obviously higher than that brazed using Ag–Cu–Ti filler alloy.  相似文献   

12.
Eight batches of low- and ultra-low cement castables were prepared from calcined Chinese bauxite and high alumina cement (HAC). The effect of alumina-cement replacement by SiC, graphite and aluminum metal on the sinterability and properties of these castables was investigated. Physical properties such as bulk density and apparent porosity of hydrated and sintered castables were studied. The sintered castables were also characterized for their solid phase compositions and microstructure using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. In the castables containing SiC, new phases such as mullite (3Al2O3·2SiO2), SiC, and quartz (SiO2) were formed at the expense of calcium aluminate phases (i.e. CA and CA2; the main cement phases). Generally, the bulk density of the control castable sample was the highest among all prepared samples, while the batches containing graphite showed the lowest bulk density. The presence of Al-metal reduced the oxidation of SiC and consequently increased the densification of the castables compared with castables containing graphite only. Cold crushing strength (CCS) of the hydrated specimens i.e. green castables, decreased as the additives contents increased at the expense of HAC which is responsible for the bonding at room temperature. The highest CCS value of the sintered castable was obtained for the sample containing 6 wt.% SiC, 3 wt.% CA and 0.5 wt.% Al-metal.  相似文献   

13.
A two-step sol–gel processing was developed to synthesize phenolic resin–SiO2 hybrid gels as SiC precursors, with tetraethoxysilane (TEOS) and novolac phenolic resin being the starting materials, and oxalic acid (OA) and hexamethylenetetramine (HMTA) being the catalysts. At the first step TEOS was prehydrolyzed under the catalysis of OA. At the second step HMTA was added to facilitate gelation. The influences of the molar ratio of OA/TEOS and prehydrolysis time on the sol–gel reaction were investigated. There existed an optimum OA/TEOS ratio where prehydrolysis time needed to form transparent gels was the shortest. The increase of temperature could accelerate sol–gel reaction. The dried hybrid gels were yellowish transparent glassy solids, with uniform microstructure composed of nanometer-sized particles. The conversion of the gels to silicon carbide powders was complete when heated at 1650°C for 30 min in vacuum. The oxygen and free carbon were 0.43 and 0.50 wt%, respectively, in the powder produced from the gel prepared with starting resin/TEOS being 0.143 g/ml.  相似文献   

14.
15.
《Ceramics International》2020,46(8):12128-12137
In this study, Ni–Co–SiC nanocoatings were fabricated using pulse current electrodeposition (PCE) method. Effects of duty cycle and pulse frequency on surface appearance, microstructure, phase structure, wear behavior, and corrosion resistance of as-deposited Ni–Co–SiC nanocoatings were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, nanoindentation, and both wear and corrosion tests. Results indicate that numerous small-sized grains formed on Ni–Co–SiC nanocoatings at 20% duty cycle to provide smooth, uniform, and fine microstructures. The content of SiC nanoparticles in Ni–Co–SiC nanocoatings decreased from 11.2 wt% to 7.4 wt% as duty cycle increased from 20% to 60%. However, the content of SiC nanoparticles in Ni–Co–SiC nanocoatings increased from 6.3 wt% to 9.7 wt% as pulse frequency increased from 100 Hz to 300 Hz. Ni–Co–SiC nanocoatings prepared at pulse frequency of 300 Hz and duty cycle of 20% exhibited average microhardness of 934.4 Hv and average thickness of 43.2 μm. Weight loss of Ni–Co–SiC nanocoatings at 300 Hz was only 17.2 mg, indicating significant wear resistance. In addition, Ni–Co–SiC nanocoatings produced at duty cycle of 20% and pulse frequency of 300 Hz exhibited the maximum impedance, indicating optimal corrosion resistance.  相似文献   

16.
《Ceramics International》2017,43(13):9934-9940
Continuous silicon carbide fiber–reinforced silicon carbide matrix (SiCf/SiC) composites have developed into a promising candidate for structural materials for high–temperature applications in aerospace engine systems. This is due to their advantageous properties, such as low density, high hardness and strength, and excellent high temperature and oxidation resistance. In this study, SiCf/SiC composites were fabricated via polymer infiltration and pyrolysis (PIP) with the lower–oxygen–content KD–II SiC fiber as the reinforcement; a mixture of 2,4,6,8–tetravinyl–2,4,6,8–tetramethylcyclotetrasiloxane (V4) and liquid polycarbosilane (LPCS), known as LPVCS, was used as the precursor; while pyrolytic carbon (PyC) was used as the interface. The effects of oxidation treatment at different temperatures on morphology, structure, composition, and mechanical properties of the KD–II SiC fibers, SiC matrix from LPVCS precursor conversion, and SiCf/SiC composites were comprehensively investigated. The results revealed that the oxidation treatment greatly impacted the mechanical properties of the SiC fiber, thereby significantly influencing the mechanical properties of the SiCf/SiC composite. After oxidation at 1300 °C for 1 h, the strength retention rates of the fiber and composite were 41% and 49%, respectively. In terms of the phase structure, oxidation treatment had little effect on the SiC fiber, while greatly influencing the SiC matrix. A weak peak corresponding to silica (SiO2) appeared after high–temperature treatment of the fiber; however, oxidation treatment of the matrix led to the appearance of a very strong diffraction peak that corresponds to SiO2. The analysis of the morphology and composition indicated cracking of the fiber surface after oxidation treatment, which was increasingly obvious with the increase in the oxidation treatment temperature. The elemental composition of the fiber surface changed significantly, with drastically decreased carbon element content and sharply increased oxygen element content.  相似文献   

17.
《Ceramics International》2016,42(8):9653-9659
Silicate-bonded porous SiC scaffolds with lamellar structures were prepared by freeze casting and liquid-phase sintering. It was found that the viscosity and solidification velocity of SiC water-based slurries with 30 vol% solid loading decreased with increasing Al2O3–MgO (AM) addition. As the AM content increased from 10 to 30 wt%, the lamellae of the sintered scaffolds became denser and the porosity decreased from 69±0.5% to 62±0.5%, while the compressive strength improved from 25±2 to 51±2 MPa. The dynamics of pressureless infiltration for an Al–12 Si–10 Mg alloy on the SiC porous scaffold was measured and the composites with lamellar-interpenetrated structures were successfully produced. Both the compressive strength and the elastic modulus of the composites increased with increasing AM content. The maximum strength reached 952±24 MPa and the highest elastic modulus about 156 GPa, respectively, in a longitudinal direction, increasing about 32% and 11% as compared with those of the composites without AM.  相似文献   

18.
The effect of SiC content, additives, and process parameters on densification and structure–property relations of pressureless sintered ZrB2–(10–40 vol%) SiC particulate composites have been studied. The ZrB2–SiC composite powders mixed by ball-milling with 1.2 wt% C (added as phenolic resin) and 3 wt% B4C have been uniaxially cold-compacted and sintered in argon environment at 1950–2050 °C for 2 h, or at 2000 °C for durations between 1/2 and 3 h. The amount of densification is found to increase with sintering duration, and by prior holding at 1250 and 1600 °C for reduction of oxide impurities (ZrO2, B2O3 and SiO2) on powder particle surfaces by the aforementioned additives. Presence of SiC with average size smaller than that of ZrB2 appears to aid in densification by enhancing green density, increasing WC content by erosion of milling media, and inhibiting matrix grain growth. Both SiC and WC appear to aid in reduction of oxide impurities. Furthermore, the impurities enriched in W, Fe and Co obtained from milling media are found to be segregated at ZrB2 grain boundaries, and appear to assist in densification by forming liquid phase, which completely wets the ZrB2 grains. Hardness increases with SiC content or with sintering duration till 1 h, but decreases for periods ≥2 h due to grain growth. The experimentally measured elastic moduli approaches corresponding theoretically predicted values with increasing SiC content due to reduction in porosity.  相似文献   

19.
Two series of C/C–SiC composites were fabricated via precursor infiltration pyrolysis (PIP) and chemical vapor infiltration (CVI) using porous C/C composites with different original densities as preforms, respectively. The tribological characteristics of C/C–SiC braking composites were investigated by means of MM-1000 type of friction testing machine. The friction and wear behaviors of the two series of composites were compared and the factors that influence the friction and wear properties of C/C–SiC composites were discussed. Results show that the friction and wear properties relate close-knit to the content of SiC and porosity. As the original preform density increasing, the content of SiC and porosity decrease, and then the friction coefficient increases obviously, the braking time and the wear rate both decrease. Preparation techniques play an important role in the tribological properties of C/C–SiC composites. Compared with PIP process, the samples from CVI have a little higher friction coefficient, shorter braking time and higher wear rate.  相似文献   

20.
The kinetics and the mechanism of oxidation of ceramics based on HfB2 and SiC, manufactured by elemental self-propagating high-temperature synthesis followed by hot pressing were investigated. The synthesis product contained HfC(x) and HfO2 as impurity phases. Depending on the ratio between the main components, the samples were characterized by high structural and chemical homogeneity, porosity of 3–6 vol%, hardness up to 29 GPa, bending strength of 500–600 MPa, fracture toughness of 5.6–8.9 MPa × m1/2, and thermal conductivity of 86.0–89.7 W/(m × K). The oxidation was performed under static conditions at 1650 °C and upon exposure to a high-enthalpy gas flow. A dense layer consisting of HfO2/HfSiO4 grains formed on the surface of the ceramics during both oxidation conditions; the space between the grains was filled with amorphous SiO2–B2O3. The best heat resistance was observed for the ceramics with 16 wt% SiC for static conditions and 8 wt% SiC for gas-dynamic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号