首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
《Ceramics International》2022,48(20):30332-30337
Stereolithography is a popular three-dimensional (3D) printing technology, which is widely used for manufacturing ceramic components owing to its high efficiency and precision. However, it is a big challenge to prepare SiC ceramic slurry with high solid content for stereolithography due to the strong light absorption and high refractive index of dark SiC powders. Here, we propose a novel strategy to develop photosensitive SiO2/SiC ceramic slurry with high solid content of 50–65 vol% by adding spherical silica with low light absorbance and applying a stacking flow model to improve the solid content of the slurry. The as-prepared slurry exhibits excellent stereolithography properties with a dynamic viscosity lower than 20 Pa s and curing thickness more than 120 μm. Therefore, it can be successfully applied for stereolithography-based additive manufacturing of SiC green bodies with large size (100 mm), sub-millimeter accuracy (0.2 mm), and complex structure. The stacking flow model also shows immense potential for the stereolithography of other dark-color ceramics with high solid content.  相似文献   

2.
高性能陶瓷是现代技术发展和应用不可或缺的关键材料。常规的陶瓷制造技术难以满足对个性化、精细化、轻量化和复杂化的高端产品快速制造的需求。新兴的增材制造技术(3D打印)在高性能陶瓷的成型制造领域具有巨大的发展潜力,有望突破传统陶瓷加工和生产的技术瓶颈,为陶瓷关键零部件的应用开辟新的途径。本文针对陶瓷材料及其快速成型和后处理工艺,重点阐述了三维打印技术、光固化成型技术、选择性激光烧结技术等主流陶瓷增材制造技术的研究现状,并指出了目前存在的问题及发展趋势。  相似文献   

3.
《Ceramics International》2019,45(11):14006-14014
Stereolithography based additive manufacturing provides a new route to produce ceramic architectures with complex geometries. In this study, 3D structured SiC ceramic architectures were fabricated by stereolithography based additive manufacturing combined with precursor infiltration and pyrolysis (PIP). Firstly, photosensitive SiC slurry was prepared. Then, stereolithography was conducted to fabricate complex-shaped green SiC parts. Polymer burn-out was subsequently performed, and porous SiC preforms were produced. After that, precursor infiltration and pyrolysis was used to improve the density and strength. Finally, 3D-structured SiC ceramic architectures with high accuracy and quality were obtained. It is believed that this study can give some fundamental understanding for the additive manufacturing of SiC ceramic structures.  相似文献   

4.
Polymer derived silicon oxycarbide ceramic materials and silicon carbide whiskers reinforced ceramic composite are prepared through digital light processing (DLP) 3D printing technology in the present work. A new type of UV-curable preceramic polymer is firstly synthesized and then two types of photopolymer resins with and without SiC whiskers as reinforcement are prepared. Due to the high curing rate and good fluidity of the resins, they are applied in DLP 3D printing and various 3D objects with complicated structures and high printing resolution have been printed. The derived ceramic materials show amorphous microstructure and there is no apparent porosity and cracking throughout the whole sample surface of the ceramic materials and the SiC whiskers are uniformly embedded in the ceramic matrix and remain intact and unaffected during the pyrolysis process. The SiC whiskers reduced the shrinkage and mass loss. More importantly, it significantly improves the mechanical performance of the derived ceramic materials in which the compressive strength increases from 77.5 ± 10.2 MPa to 98.4 ± 12.3 MPa. Benefiting from the easiness of the fabrication, high printing resolution and excellent mechanical performance, the derived ceramic materials have great potential applications in various areas.  相似文献   

5.
Stereolithography is one of the most widely used additive manufacturing techniques for preparing high precision and complex ceramic components. Due to the high optical absorbance and refractive index of SiC powder, the rapid stereolithography of SiC ceramics components has become a key challenge. Here, we innovatively use graded silica to improve the curing thickness, rheological and settling performance of the slurry. And we presented a preparation method of SiC ceramic slurry for stereolithography with high solid content, low viscosity, low sedimentation rate and high curing thickness. The printable precision of the slurry is more than 75 μm, the dynamic viscosity is less than 2 Pa·s, and the 24 h sedimentation height is less than 5%. This strategy demonstrates a tantalizing possibility and promising prospect to rapid stereolithography of large size SiC ceramic green body.  相似文献   

6.
SiC ceramic lattice structures (CLSs) via additive manufacturing (AM) have been recognized as potential candidates in engineering fields owing to their various merits. Compared with traditional SiC CLSs, SiC triply periodic minimal surface (TPMS) CLSs could possess more outstanding properties, making them more promising for wider applications. Since SiC CLSs are hard to be fabricated through stereolithography techniques because of inferior light performance, the laser powder bed fusion (LPBF) process via selective sintering is an effective method to prepare near-net-shaped SiC TPMS lattices. As the mechanical performances of lattice structures are the foundation for future practical applications, it is of great significance to optimize the preparation process, thus improving the mechanical properties of SiC TPMS structures. In this work, the optimal printing parameters of the LPBF and liquid silicon infiltration process for SiC ceramic TPMS CLSs with three different volume fractions were systematically illustrated and analyzed. The effects of the printing parameters and carbon densities on the fabrication accuracy, microstructure, and mechanical performance of SiC TPMS CLSs were defined. The mechanism of the reactive sintering process for the SiC TPMS lattice structure was revealed. The results reveal that Si/SiC TPMS CLSs with optimum preparation have superior manufacturing accuracy (most less than 6%), relatively high bulk densities (about 2.75 g/cm3), low residual Si content (6.01%), and excellent mechanical properties (5.67, 15.4, and 44.0 MPa for Si/SiC TPMS CLSs with 25%, 40%, and 55% volume fractions, respectively).  相似文献   

7.
3D打印成型陶瓷零件坯体及其致密化技术   总被引:1,自引:0,他引:1       下载免费PDF全文
3D打印技术在陶瓷零件成型方面具有较大应用潜力,被认为是近净尺寸成型高性能复杂结构陶瓷零件的一种新途径。本文比较了陶瓷零件或其坯体的激光选区熔化、薄材叠加制造、熔融沉积造型、光固化、三维打印和激光选区烧结等不同3D打印工艺及其致密化手段的优势和不足,认为较低的相对密度和强度是阻碍3D打印陶瓷零件实现产品应用的主要障碍。本团队近年来采用造粒混合法制备出具有良好流动性的3D打印复合陶瓷粉体,再通过激光选区烧结(SLS)和冷等静压(CIP)技术分别进行坯体成型及均匀致密化处理,制备出了高性能、复杂结构的Al_2O_3致密陶瓷零件。本文回顾了这些工作,并补充介绍了溶解沉淀和溶剂蒸发这两种制备复合陶瓷粉体的新方法,利用SLS/CIP复合工艺进一步制造了ZrO_2、SiC、高白土等其它材质的复杂陶瓷零件,为3D打印陶瓷用于航空航天、医疗、艺术等领域奠定了基础。  相似文献   

8.
The stereolithography-based additive manufacturing of white-colored Al2O3 and ZrO2 ceramics has been widely reported, whereas the stereolithography-based additive manufacturing of gray-colored SiC ceramic is very difficult and challenged. In this paper, the reasons for the difficulty which SiC ceramic facing during stereolithography were discussed and compared to Al2O3 and ZrO2 ceramics. The effects of particle size, solid loading, stereolithography parameters, and photoinitiator kind and concentration on the curing ability of SiC slurries were further studied in detail. Finally, complex-shaped SiC ceramic green parts with high accuracy and high quality were successfully fabricated. This study demonstrated that the stereolithography-based additive manufacturing had a great possibility for preparing gray-colored SiC ceramics.  相似文献   

9.
Ceramic 3D printing based on stereolithography is an excellent alternative to overcome drawbacks of conventional subtractive manufacturing for 3D shape control. Optimization of photocurable ceramic slurry is one of the most essential conditions to achieve favorable 3D printed structures using SL. Homogeneity of ceramic particle dispersion in photocurable resin is particularly important to optimize ceramic suspension. Dispersant plays a significant role in increasing homogeneity. Dispersant in photocurable ceramic resin has an additional effect on photocurability and integrity of 3D printed green body. We herein discuss how dispersants influence 3D printing conditions based on stereolithography using various commercially available dispersants of BYK series such as BYK103, BYK111, BYK180, BYK182, and BYK2001. Both BYK111 and BYK180 showed better performances than others because of their lower volatilities under general temperature condition during a printing process. Both solubility and decomposition temperature of dispersants largely influenced the structural quality after washing and debinding processes. This study provides worthy information to design photocurable ceramic suspension for various types of ceramic materials.  相似文献   

10.
《Ceramics International》2022,48(11):15218-15226
We prepare bimodal particle size photo-curable ceramic pastes with high solid loadings (up to 65 vol %) and fabricate porous alumina ceramic cores with complex shapes via ceramic stereolithography (Cer-SLA) 3D printing technique. The sintering temperature is carefully selected, ranging from 1500 °C to 1650 °C, and a high holding time (>4 h) is applied to guarantee that the materials can withstand the subsequent high temperature (>1500 °C) casting process for single-crystal nickel-based superalloy hollow turbine blades. Herein, the originally spherical fine particles are found to become platelet-like after sintering, and the forming mechanism is discussed in detail. In addition, we explore the influence of platelet-like particles, coarse particles and sintering process on the microstructural evolution of alumina particles, and reveal the relationship between microstructure and properties of ceramic cores. These results illustrate that the proposed materials for SLA 3D printing exhibit a great potential in the fabrication of complex-shaped alumina ceramic cores for high-precision investment casting, e.g., manufacturing single-crystal nickel-based superalloy hollow turbine blades for an advanced aircraft engine.  相似文献   

11.
This article reports a novel method for three-dimensional (3D) printing of continuous fibers into ceramics to improve the mechanical properties of printed ceramics, which is difficult in other 3D printing technologies. The ceramics were derived by pyrolysis of thermoplastic ceramic precursor feedstocks, which were prepared by two methods. One is homogeneously mixing thermoplastic resins and ceramic precursors. The feedstocks prepared by this method exhibit good thermoplastic properties and can be extruded into filaments. Ceramics were obtained by heating the feedstocks to 1100°C in argon atmosphere. The ceramics were amorphous and remained stable during 1100-1300°C; at 1400°C they decomposed into β–SiC with simultaneous volatile gas generation. Above 1400°C, their quality decreased significantly due to cracking of ceramic skeletons. The other method is directly heating, extruding and printing the ceramic precursor. The precursors showed good printability and complex ceramic structures were printed with continuous carbon fibers inside. The continuous carbon fibers improved the flexural strength of pyrolytic ceramics, which is about 7.6 times better than that of the ceramics without fibers. The novel method unravels the potential of 3D printing of continuous fibers into ceramics with complex lightweight structures to improve the strength.  相似文献   

12.
3D打印技术因其操作简单便捷、成型快速灵活、可制备复杂结构的器件等优点,在精密陶瓷零件制造方面具有广泛应用。本文根据3D打印陶瓷的材料形态综述不同3D打印技术在陶瓷制备方面的特点,重点介绍了陶瓷3D打印成型技术中直写式3D打印、光固化3D打印、喷墨3D打印等技术所涉及的粘结剂、分散剂等组分的应用及作用机理,并对水基和非水基两种类型的添加剂组分进行总结和探讨,以期为3D打印技术制备高性能陶瓷样件提供参考。  相似文献   

13.
Selecting suitable ceramic powders for the preparation of UV-curable ceramic suspensions, which are well suited for printing processes and production of high-performance ceramic components, is a crucial factor in the practical industrial application of digital light processing (DLP) stereolithography. Therefore, this study aims to provide a comprehensive evaluation of alumina ceramic parts fabricated via DLP stereolithography using a variety of alumina powders with varying sizes and morphologies. Experiments were conducted to examine the rheological response, recoating performance, and curing behavior of UV-curable alumina suspensions. Additionally, the thermal decomposition behavior of three-dimensional (3D)-printed green-bodies, as well as the physical and mechanical properties of 3D-printed sintered alumina components were thoroughly investigated. The best physical and mechanical performances were achieved by printing 55 vol% suspensions prepared using near-spherical AA04 alumina powders (median diameter .4 μm). This study elucidates the effects of ceramic particle size and morphology on the entire technological process of DLP-based ceramic stereolithography, thereby establishing the guidelines for the fabrication of high-performance 3D-printed ceramic objects in industrial and engineering production by selecting appropriate ceramic powders.  相似文献   

14.
SiC基反射镜制备工艺研究进展   总被引:4,自引:0,他引:4  
空间系统用的高性能轻质反射镜的研究和应用正逐年稳定发展,本文从几种卫星反射镜材料的性能和特性出发,得出SiC及其复合材料作为反射镜材料性能最佳的结论;通过比较各种工艺制备SiC基反射镜性能,结果显示:只有CVD SiC能够作为反射镜反射光学表面.本文重点详细介绍了SiC及其复合材料反射镜制备工艺及方法特点,并对其工艺发展前景进行了展望.  相似文献   

15.
Three-dimensional (3D) printing of ceramics has gained widespread attentions in recent years. Many excellent reviews have reported the printing of ceramics. However, most of them focus on printing of dense ceramics or general ceramic aspects, there is no systematical review about 3D printing of porous ceramics. In this review paper, the 3D printing technologies for fabricating of porous ceramic parts are introduced, including binder jetting, selective laser sintering, direct ink writing, stereolithography, laminated object manufacturing, and indirect 3D printing processes. The techniques to fabricate hierarchical porous ceramics by integrating 3D printing with one or more conventional porous ceramics fabrication approaches are reviewed. The main properties of porous ceramics such as pore size, porosity, and compressive strength are discussed. The emerging applications of 3D printed porous ceramics are presented with a focus on the booming application in bone tissue engineering. Finally, summary and a perspective on the future research directions for 3D printed porous ceramics are provided.  相似文献   

16.
《Ceramics International》2020,46(4):4720-4729
Stereolithography based additive manufacturing provides an effective method to fabricate complex-shaped SiC ceramic components. The dispersion and stability of the ceramic slurry are very important for stereolithography. In this study, the dispersion and stability of SiC ceramic slurries were investigated systematically. The effects of resin monomers, dispersants, particle size, solid loading and ball milling time on the dispersion, rheological behavior and stability of SiC ceramic slurries were studied in detail. Finally, an optimal SiC ceramic slurry for stereolithography based additive manufacturing was obtained, and complex-shaped SiC ceramic architectures were fabricated.  相似文献   

17.
选用3D打印制备的碳纤维增强碳化硅陶瓷基(Cf/SiC)复合材料被广泛应用在航空航天、国防军事等重大领域。碳纤维(Cf)作为陶瓷基复合材料的主要候选增强体之一,由于表面惰性的存在,为了提高其与碳化硅(SiC)陶瓷基体的粘附性,对原料Cf的表面改性工作是十分必要的。粉末原料的高效改性制备是3D打印成型陶瓷的重要途径。本文综述了近年来国内外针对Cf改性的各种方法及特点,对Cf/SiC复合材料的3D打印成型及其高效制备方法进行归纳总结。  相似文献   

18.
3D structured SiC ceramics with varying feature sizes (100–400?μm) were achieved by direct ink writing of polycarbosilane (PCS)/n-hexane solution. The rheological properties of the PCS solution and printing parameters were tailored for optimum writing behaviour. The integrity and clear surface of the filaments indicated the printing ability of forming the self-supporting features along with the rapid evaporation of solvent. As-printed 3D structured PCS was processed by oxidative crosslinking and pyrolysis and converted to SiC ceramic. Although strong shrinkage occurred during the pyrolysis, SiC ceramic maintained the original 3D structure. Both proper viscoelasticity of printable solutions and the homogeneous shrinkage in the pyrolysis determine the integrity and feature characteristic of 3D structured SiC using direct ink writing preceramic polymer.  相似文献   

19.
The preparation of SiCw/SiC materials was realized by SLS technology. The effect of SiC powder size on the number and size of SiC whisker formation was investigated. The tortuosity and diameter of open pores are introduced to modify the classical molecular collision model, and the relationship model between the growth rate of SiC whisker and porosity was established. The influence mechanism of powder size on the number of whisker growth was revealed. According to the model, the number of in-situ whisker growth in powder can be calculated, and the calculated results by using this model agreed with the test results. So it is suitable for in-situ whisker microstructure control under SLS technology, and also suitable for other 3D printed whisker in-situ reinforced ceramic material systems. This is of great significance to expand the application of 3D printing ceramic matrix composites.  相似文献   

20.
《Ceramics International》2022,48(12):17400-17411
Design and fabrication of silicon carbide ceramic complex parts introduce considerable difficulties during injection molding. Due to the great importance in processing optimization, an accurate prediction on the stress and displacement is required to obtain the desired final product. In this paper, a conceptual framework on combination of finite element method (FEM) and machine learning (ML) method was developed to optimize the injection molding process, which can be used to manufacture large-aperture silicon carbide mirror. The distribution characteristics of temperature field and stress field were extracted from FEM simulation to understand the injection molding process and construct database for ML modeling. To select the most appropriate model, the predictive performance of three ML models were estimated, including generalized regression neural network (GRNN), back propagation neural network (BPNN) and extreme learning machine (ELM). The results show that the developed ELM model exhibits exceptional predictive performance and can be utilized to predict the stress and displacement of the green body. This work allows us to obtain reasonable technique parameters with particular attention to the loading speed and provides some fundamental guidance for the fabrication of lightweight SiC ceramic optical mirror.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号