共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
注塑件翘曲变形的CAE研究 总被引:28,自引:1,他引:28
从注塑成型的角度讨论了与翘曲变形有关的因素,从数值模拟的角度论述了翘曲变形计算机辅助工程(CAE)分析的数学模型和数值算法,最后从应用的角度,说明翘曲变形CAE结果的合理应用。 相似文献
7.
为拓宽微孔注塑制品的应用范围,需要改善其表面质量,降低其翘曲变形。模腔气体反压技术、模腔被动控温技术、微孔共注塑技术、泡孔成核速率控制技术、微孔注射压缩成型技术和快速热循环微孔注塑技术等可有效改善微孔注塑制品的表面质量。模腔气体反压技术、微孔共注塑技术和调整加工参数可进一步降低微孔注塑制品的收缩率和翘曲,提高制品的尺寸精度。本文较系统介的绍了这些技术和方法。 相似文献
8.
注塑制品翘曲变形的研究进展 总被引:1,自引:0,他引:1
介绍了翘曲变形的分类、产生原因及表征方法,分析了影响翘曲变形的因素,包括成型材料、塑件结构、模具结构和工艺参数等,并介绍了计算机辅助工程技术在注塑制品翘曲变形分析中的应用及解决翘曲变形的方法。 相似文献
9.
10.
本研究提出了一种测量翘曲变形的方法,其中翘曲变形由翘曲度和旋转特征来表征。基于注塑成型CAE模拟,建立了翘曲度的估算公式。通过实例验证了该方法的有效性。 相似文献
11.
12.
对不同填充形式下的3种聚丙烯(PP)进行Mucell微孔注射成型试验。根据扫描电镜(SEM)结果得出:3种PP发泡差别较大且出现了明显的分层现象。通过单因素四水平试验法,考察了在微孔注射成型过程中3种PP的熔体温度和注射速度对制品拉伸强度的影响。结果表明:随着熔体温度的增加,发泡材料的拉伸强度基本呈现上升趋势;较低的注射速度得到的样条残余玻纤长度较长,材料力学性能较好;进而得到了发泡样条的宏观力学性能与残余玻纤长度之间的关系。 相似文献
13.
粉末浸渍长玻璃纤维增强聚丙烯的注塑 总被引:1,自引:0,他引:1
采用粉末浸渍的方法制备连续玻璃纤维增强聚丙烯预浸料,经切割获得长纤维增强聚丙烯粒子,探索了材料的注塑工艺,研究了注塑后材料的力学性能及其影响因素。结果表明,粉末浸渍的长纤维增强聚丙烯经注塑后可获得力学性能的制品;随着预浸料切割长度的增长、纤维含量的增加,材料的力学性能提高;在基体聚丙烯中添加接枝极性基团的功能化聚丙烯,可改善体系的界面结合,提高材料的力学性能,但功能化聚丙烯的含量超过一定值后,材料的冲击强度有所下降;控制注塑时的模具温度,可以改变材料的一些力学性能。 相似文献
14.
气辅注射成型玻璃纤维增强聚丙烯的发泡结构 总被引:1,自引:0,他引:1
用扫描电镜对气辅注射成型玻璃纤维(GF)增强聚丙烯(PP)制品横截面进行观察.结果表明,在靠近气道内壁一定厚度的区域内都有发泡结构生成,而纯PP的气辅注射成型制品则没有这种发泡结构,并且这种发泡程度一般随着GF含量和气体压力的增加而增大;在形貌分析的基础上,探讨了气辅注射成型过程中GF和气体穿透对发泡结构形成的影响. 相似文献
15.
玻璃纤维增强复合材料工程化应用进展 总被引:1,自引:0,他引:1
介绍了玻璃纤维增强树脂基复合材料的特点及成型方法,并介绍了玻璃纤维增强复合材料用于风电叶片、风电联轴器、复合材料板弹簧、聚氨酯轨枕以及多功能履带板的工程化应用研究实例。展望了玻璃纤维增强复合材料在轨道交通、汽车工业等领域的工程化应用前景及发展方向。 相似文献
16.
17.
18.
19.
以斜纹3k T300碳纤维布、环氧树脂和0.3~0.5 mm短切碳纤维为主要实验原料,使用短切纤维铺放装置将短切碳纤维定量铺放在碳纤维布表面,并铺层得到5块层间短切纤维增强的预制体,每块预制体含8层碳纤维布且每块预制体层间短切碳纤维铺放面密度分别为5,10,20,30,40 g/m2,并增设一块层数为8层、层间不含短切纤维增强的预制体作为对照组。采用真空辅助树脂灌注成型方式浸渍预制体后高温固化,得到层间含不同面密度短切纤维的碳纤维复合材料层合板,研究了不同面密度短切纤维含量对碳纤维复合材料层合板拉伸、弯曲以及层间剪切强度的影响。研究结果表明,当短切碳纤维铺放面密度为5 g/m2时,复合材料层板的拉伸、弯曲强度最好,在5~40 g/m2范围内,复合材料层板的层间剪切强度随短切碳纤维铺放面密度的增大而增大。 相似文献