首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To date, obtaining the high-solid-loading Al2O3 slurry and overcoming the trade-off between high solid loading and printing accuracy and strength of printed green bodies to achieve high-performance and precision Al2O3 ceramic parts by DLP 3D printing remain challenging. In this study, an Al2O3 slurry with high solid loading of 60 vol% was developed through dispersant optimisation for top-down DLP 3D printing. Graphene was innovatively introduced during slurry fabrication to decouple the printing accuracy and strength of green bodies from such high solid loading. Simultaneously, graphene addition could considerably reduce slurry fluidity, thereby facilitating its coordination with top-down DLP. With 0.07 wt% graphene addition, the dimension deviations of printed green bodies improved from 90 to 880 µm to ≤ 70 µm, and the bending strength increased by 17.75%. High-performance and precise Al2O3 ceramic components with low sintering shrinkages were prepared. The density and microhardness were 99.7% and 18.61 GPa, respectively.  相似文献   

2.
Digital light processing (DLP) 3D printing has been utilized to fabricate controlled porous β-tricalcium phosphate (β-TCP) scaffolds, which promote cell adhesion and angiogenesis during bone regeneration. However, the current limitation of DLP 3D printing for the fabrication of β-TCP scaffold is how to prepare a low viscosity ceramic slurry and remove the toxicity of residual non-polymerized slurry. The present study has developed a low viscosity ceramic slurry system by mixing β-TCP with photosensitive acrylate resin, and the viscosity of slurry is about 3 Pa s and the solid content of β-TCP can be as high as 60 wt%. After optimizing the ratio of slurry, printing, degreasing and sintering processes, the maximum compressive strength of the DLP printed scaffolds reaches up to 9.89 MPa, while the porosity keeps ca. 40%. According to the proliferation of cells, it confirms the preserved biocompatibility of DLP-fabricated β-TCP scaffolds. These porous scaffolds made by DLP 3D printing technology is of great significance for bone regeneration, and will also help to expand the application of DLP technology in biomedical field.  相似文献   

3.
《Ceramics International》2020,46(7):8682-8688
Digital Light Processing (DLP) is a promising approach to fabricate delicate ceramic components with high-fidelity structural features. In this work, the alumina and zirconia/alumina ceramic suspensions with low viscosity and high solid loading (40 vol%) were prepared specifically for DLP 3D printing. After debinding and sintering, the final parts were obtained without any defects. The surface morphologies and mechanical properties of alumina (Al2O3) and zirconia toughened alumina (ZTA) composites were investigated and the results showed that the final parts exhibited high relative densities and good interlayer combination at the sintering temperature of 1600 °C. Comparing with the Al2O3, the ZTA composites exhibited significantly enhanced density (99.4%), bending strength (516.7 MPa) and indentation fracture toughness (7.76 MPa m1/2).  相似文献   

4.
Selecting suitable ceramic powders for the preparation of UV-curable ceramic suspensions, which are well suited for printing processes and production of high-performance ceramic components, is a crucial factor in the practical industrial application of digital light processing (DLP) stereolithography. Therefore, this study aims to provide a comprehensive evaluation of alumina ceramic parts fabricated via DLP stereolithography using a variety of alumina powders with varying sizes and morphologies. Experiments were conducted to examine the rheological response, recoating performance, and curing behavior of UV-curable alumina suspensions. Additionally, the thermal decomposition behavior of three-dimensional (3D)-printed green-bodies, as well as the physical and mechanical properties of 3D-printed sintered alumina components were thoroughly investigated. The best physical and mechanical performances were achieved by printing 55 vol% suspensions prepared using near-spherical AA04 alumina powders (median diameter .4 μm). This study elucidates the effects of ceramic particle size and morphology on the entire technological process of DLP-based ceramic stereolithography, thereby establishing the guidelines for the fabrication of high-performance 3D-printed ceramic objects in industrial and engineering production by selecting appropriate ceramic powders.  相似文献   

5.
《Ceramics International》2022,48(10):14026-14038
Alumina green bodies shaped with digital light processing (DLP) technology were debinded in four atmospheres, including air, argon (Ar), mixture of 95% argon and 5% hydrogen (95% Ar +5% H2) and vacuum, at different heating rates (0.5 °C/min, 1 °C/min and 3 °C/min), followed by sintering in air at 1650 °C for 3 h. The effects of debinding atmosphere and heating rate on microstructure and densification of the brown bodies and sintered bodies were evaluated via morphology characterization, X-ray computed tomography (CT) reconstructions and other tests. Focusing on the quantitative analysis of the geometric characteristics and distribution of defects in the brown bodies and sintered bodies, it is found that the type (holes, cracks and delamination), content and volume distribution of defects during the debinding in aerobic and anaerobic environments are different. Our study indicates that low-rate vacuum debinding should be adopted as a promising debinding approach for ceramics shaped with photopolymerization-based additive manufacturing technology.  相似文献   

6.
选用复合分散剂制备低粘度陶瓷料浆,采用自主研发的陶瓷3D打印机,以DLP(digital light processing)工艺制备出了大壁厚(>3 mm)SiO2空心内六角陶瓷部件,坯体精度均在50 μm内。分析了3D打印陶瓷素坯在空气气氛和氩气气氛下的热分解过程,研究了气氛对大壁厚(>3 mm)SiO2陶瓷部件脱脂与烧结的影响。结合扫描电子显微镜(SEM)分析了大壁厚(>3 mm)3D打印SiO2陶瓷坯体快速脱脂烧结的工艺,氩气气氛有利于大壁厚SiO2陶瓷快速脱脂烧结。氩气气氛下,控制气流量,进行了大壁厚(>3 mm)SiO2陶瓷部件的快速制备,脱脂烧结周期大大缩短,为21.8 h,较自国外某公司进口的料浆及其工艺的制备周期(以进口的该公司料浆及工艺制备的相同产品制备周期为283 h)缩短92.3%,较公开报道的3D打印相同工艺制备的SiO2陶瓷空心叶片制备周期缩短82%以上。  相似文献   

7.
Herein, alumina green bodies are fabricated by three dimensional (3D) printing technology, then, the influence of debinding holding time under vacuum and argon on mechanical properties is systematically investigated by comparing the changes in microstructure, bulk density, open porosity, grain connection situation and flexural strength of ceramics. The flexural strength of alumina ceramics acquired the maximum values of 26.4 ± 0.7 MPa and 25.1 ± 0.5 MPa after debinding under vacuum and argon for 120 min and 180 min, respectively. However, the alumina ceramics rendered the flexural strength of 19.4 ± 0.6 MPa and 9.5 ± 0.4 MPa under vacuum and argon without extended holding time, respectively. The relatively low mechanical properties can be mainly attributed to the weak interlayer binding force, which is caused by layer-by-layer forming mode during 3D printing process and anisotropic shrinkage during the sintering process. Moreover, the alumina ceramics exhibited moderate bulk density and open porosity of 2.4 g/cm3 and 42% after the sintering process, respectively, which are mainly influenced by the microstructural evolution of alumina ceramics during thermal treatment. Also, the diffusion of gases is achieved by curing of photosensitive resin and influenced by different holding times during debinding, affecting the mechanical properties of sintered ceramics. The mechanical properties of as-sintered ceramics are suitable for the utilization of ceramic cores in the manufacturing of hollow blades.  相似文献   

8.
《Ceramics International》2023,49(12):20024-20033
Herein, the effect of the binder content in lead zirconate titanate (PZT) slurry has been systematically studied to improve the piezoelectric properties of PZT ceramics prepared via material extrusion 3D printing. For smooth printing, a slurry with a binder concentration ranging from 6 to 12 wt% was proposed. The porosity of the green body first decreased and then increased with an increase in the binder concentration, and the minimum porosity was obtained when the binder concentration reached 10 wt%. Samples with increased density were obtained after debinding and lead-rich atmosphere sintering. PZT piezoceramics fabricated using a binder content of 10 wt% exhibit the maximum relative density (96.9%), largest piezoelectric constant (342.6 pC/N) and dielectric constant (1621). Based on the above process, the wood pile structure and helical twentytetrahedral structural components were successfully fabricated using the material extrusion process. This research lays the foundation for the engineering application of 3D printing to fabricate high-performance piezoceramics with complex shapes.  相似文献   

9.
An Al2O3/YAG: Ce3+ ceramic phosphor was fabricated for high-flux laser lighting using the digital lighting process (DLP)-based 3D printing method for the first time. The photocurable ceramic suspension for 3D printing was prepared by blending well-treated Al2O3/YAG: Ce3+ composite powders with photosensitive resin monomers and photo-initiators. The printing parameters, debinding and sintering processes were designed delicately to fabricated the dense sub-millimeter-sized cylinder ceramic with high dimensional accuracy. The ceramic showed excellent luminescence property under blue laser excitation with a threshold of 20.7 W/mm2, higher than that prepared via dry-pressing followed by vacuum sintering. The luminescence properties and the microstructures of both ceramics were further comparatively investigated to find the possible interpretations for improvement of laser flux for the 3D-printed ceramic. The present work indicated that the new developed 3D printing method was promising for preparing luminescent ceramics for high-flux laser lighting in a rapid, effective, low-cost and precision-controlled manner.  相似文献   

10.
Thermoplastic extrusion based additive manufacturing (MEX-AM), is a very interesting fabrication method for the shaping of larger ceramic parts. Commercial filaments are currently available in the market, but due to the lack of information from the suppliers, it is not easy to select the suitable filament material for the 3D printing of individual ceramic objects. In this study, three commercial yttria-stabilized zirconia (YSZ) filaments provided by Fabru GmbH, SiCeram GmbH and PT+A GmbH were investigated. According to our results, it is possible to print YSZ filaments with extremely different flexibility and rheological properties. Compared to the other two filaments, the Fabru filament resulted in significantly higher flexibility, but the extrusion pressure to print it through a 0.25 mm nozzle was significantly higher at 150 °C. Interestingly, in the SiCeram filament, a grain orientation effect could be observed. Based on STA analysis it can be assumed that for the Fabru filament, the polymer which decomposes at a high temperature can already be removed by solvent debinding (SD). Finally, 70 mm tall cup structure including overhang features and different wall thicknesses was used to evaluate the printing and post-processing of YSZ filaments.  相似文献   

11.
《Ceramics International》2022,48(5):6477-6487
A series of porous scaffolds of piezoelectric ceramic barium titanate (BaTiO3) were successfully fabricated by Digital Light Processing (DLP) 3D printing technology in this work. To obtain a high-precision and high-purity sample, the debinding sintering profile was explored and the optimal parameters were determined as 1425 °C for 2h. With the increase of scaffolds porosity from 10% to 90%, the compressive strength and piezoelectric coefficient (d33) decreased gradually. The empirical formulas about the mechanical and piezoelectric properties were obtained by adjusting BaTiO3 ceramics with different porosity. In addition, the distribution of potential and stress under 100 MPa pressure were studied by the finite element method (FEM).  相似文献   

12.
Solid Oxide Fuel Cells (SOFCs) are environmentally efficient energy conversion devices, but are partially limited by the complicated fabrication procedure. In this work, dense 8 mol% yttria-stabilized zirconia (8YSZ) ceramics were successfully realized through a DLP (digital light processing) stereolithography method and the electrolyte self-supported fuel cell was also tested at 800 °C. The sintering behavior of the as-printed planar samples were investigated and a fully dense ceramic can be achieved at 1450 °C. The total conductivity of the sintered 8YSZ can reach 2.18 × 10−2 S cm−1 at a test temperature of 800 °C, which is acceptable for practical application. For the electrolyte self-supported fuel cell test, a power density of 114.3 mW cm−2 can be achieved when Ni-8YSZ cermet and La0.8Sr0.2MnO3 (LSM) were used as anode and cathode. It was demonstrated that 3D printing is a promising processing technique to build up electrolyte self-supported SOFCs with desired structure for the future development.  相似文献   

13.
Polymer derived silicon oxycarbide ceramic materials and silicon carbide whiskers reinforced ceramic composite are prepared through digital light processing (DLP) 3D printing technology in the present work. A new type of UV-curable preceramic polymer is firstly synthesized and then two types of photopolymer resins with and without SiC whiskers as reinforcement are prepared. Due to the high curing rate and good fluidity of the resins, they are applied in DLP 3D printing and various 3D objects with complicated structures and high printing resolution have been printed. The derived ceramic materials show amorphous microstructure and there is no apparent porosity and cracking throughout the whole sample surface of the ceramic materials and the SiC whiskers are uniformly embedded in the ceramic matrix and remain intact and unaffected during the pyrolysis process. The SiC whiskers reduced the shrinkage and mass loss. More importantly, it significantly improves the mechanical performance of the derived ceramic materials in which the compressive strength increases from 77.5 ± 10.2 MPa to 98.4 ± 12.3 MPa. Benefiting from the easiness of the fabrication, high printing resolution and excellent mechanical performance, the derived ceramic materials have great potential applications in various areas.  相似文献   

14.
Ceramic core is an essential component in the precise casting of hollow turbine blades, and the investigation on 3D printing of silica-based ceramic cores is crucial to the development of aviation industry; however, they are suffered from difficulty in high-temperature strength and structural anisotropy. In present work, silica-based ceramic cores were prepared via DLP stereolithography 3D printing, and the anisotropy management on microstructures and properties were explored based on the particle size of fused silica powders. In 3D printed ceramic cores with coarse powders, significant anisotropy was displayed exhibiting multilayer structure with large gaps in horizontal printing and uniform porous microstructure in the vertical direction, which was further explained by the particle deposition in printing. With finer silica powders, the uniformity in the microstructures was highly improved, attributed to the enhanced particle dispersion in ceramic slurries and promoted interlayer particle rearrangement during sintering. To evaluate the anisotropy in mechanical property, the ratio of vertical strength to horizontal strength (σVH) was proposed, which rose from 0.48 to 0.86 as the particle size decreased from 35 µm to 5 µm, suggesting enhanced mechanical uniformity. While the average particle size of silica powders was 5 µm, the flexure strengths of ceramic cores in different directions were up to 18.5 MPa and 16.3 MPa at 1540 °C with σVH ratio of 0.88, which well satisfied the demands for the casting of turbine blades. This work inspires new guidance on the anisotropy management in ceramic cores prepared by 3D printing, and provides new technology for fabrication of silica-based ceramic cores with superior high temperature mechanical properties.  相似文献   

15.
Transparent alumina ceramics were fabricated using an extrusion-based 3D printer and post-processing steps including debinding, vacuum sintering, and polishing. Printable slurry recipes and 3D printing parameters were optimized to fabricate quality green bodies of varying shapes and sizes. Two-step vacuum sintering profiles were found to increase density while reducing grain size and thus improving the transparency of the sintered alumina ceramics over single-step sintering profiles. The 3D printed and two-step vacuum sintered alumina ceramics achieved greater than 99 % relative density and total transmittance values of about 70 % at 800 nm and above, which was comparable to that of conventional CIP processed alumina ceramics. This demonstrates the capability of 3D printing to compete with conventional transparent ceramic forming methods along with the additional benefit of freedom of design and production of complex shapes.  相似文献   

16.
《Ceramics International》2022,48(7):9673-9680
Solid oxide fuel cells (SOFCs) have strong potential for next-generation energy conversion systems. However, their high processing temperature due to multi-layer ceramic components has been a major challenge for commercialization. In particular, the constrained sintering effect due to the rigid substrate in the fabrication process is a main reason to increase the sintering temperature of ceramic electrolyte. Herein, we develop a bi-layer sintering method composed of a Bi2O3 sintering sacrificial layer and YSZ main electrolyte layer to effectively lower the sintering temperature of the YSZ electrolyte even under the constrained sintering conditions. The Bi2O3 sintering functional layer applied on the YSZ electrolyte is designed to facilitate the densification of YSZ electrolyte at the significantly lowered sintering temperature and is removed after the sintering process to prevent the detrimental effects of residual sintering aids. Subsequent sublimation of Bi2O3 was confirmed after the sintering process and a dense YSZ monolayer was formed as a result of the sintering functional layer-assisted sintering process. The sintering behavior of the Bi2O3/YSZ bi-layer system was systematically analyzed, and material properties including the microstructure, crystallinity, and ionic conductivity were analyzed. The developed bi-layer sintered YSZ electrolyte was employed to fabricate anode-supported SOFCs, and a cell performance comparable to a conventional high temperature sintered (1400 °C) YSZ electrolyte was successfully demonstrated with significantly reduced sintering temperature (<1200 °C).  相似文献   

17.
《Ceramics International》2022,48(1):304-312
In this study, a novel method was proposed for preparing high-flux ceramic membranes via digital light processing (DLP) three-dimensional (3D) printing technology. Two different alumina powders were well dispersed in a photosensitive resin to form a UV-curable slurry for DLP 3D printing. The effects of the grading ratio on the viscosity of the slurry and the porosity, pore size distribution, mechanical strength, roughness, and permeability of the ceramic membranes were systematically investigated. The thermal treatment conditions were also studied and optimized. The obtained ceramic membranes exhibited a uniform pore size distribution, a high porosity, a low tortuosity factor, and an asymmetric structure. The combination of these factors led to a high flux for the 3D-printed ceramic membranes. DLP 3D printing exhibited a good potential to be a strong candidate for the next generation of ceramic membrane fabrication technology.  相似文献   

18.
《Ceramics International》2022,48(11):15218-15226
We prepare bimodal particle size photo-curable ceramic pastes with high solid loadings (up to 65 vol %) and fabricate porous alumina ceramic cores with complex shapes via ceramic stereolithography (Cer-SLA) 3D printing technique. The sintering temperature is carefully selected, ranging from 1500 °C to 1650 °C, and a high holding time (>4 h) is applied to guarantee that the materials can withstand the subsequent high temperature (>1500 °C) casting process for single-crystal nickel-based superalloy hollow turbine blades. Herein, the originally spherical fine particles are found to become platelet-like after sintering, and the forming mechanism is discussed in detail. In addition, we explore the influence of platelet-like particles, coarse particles and sintering process on the microstructural evolution of alumina particles, and reveal the relationship between microstructure and properties of ceramic cores. These results illustrate that the proposed materials for SLA 3D printing exhibit a great potential in the fabrication of complex-shaped alumina ceramic cores for high-precision investment casting, e.g., manufacturing single-crystal nickel-based superalloy hollow turbine blades for an advanced aircraft engine.  相似文献   

19.
《Ceramics International》2023,49(15):24852-24860
Zirconia ceramic (3Y-TZP) feedstocks with solid loadings from 50 vol% to 68 vol%, in a 60:40 paraffin wax to LDPE ratio binder system, were prepared and printed using a screw-based material extrusion printer. A two-step debinding process involving solvent debinding (cyclohexane + ethanol) and thermal debinding (140 °C–600 °C at 0.2 °C/min) followed by sintering at 1500 °C for 2 h was employed. Tests performed include TGA, density test, Vickers hardness and fracture toughness, XRD, and SEM. The TGA result showed two significant drops in weight starting at 180 °C and 380 °C, which corresponds to the decomposition of paraffin wax and LDPE, respectively. A minimum of 40 wt% of soluble binder was removed from the green sample after solvent immersion for 3 h at 40 °C for solid loadings ≥55 vol%. High solid loading feedstocks produced samples with comparable density, Vickers hardness and fracture toughness, which are 97.5%, ∼12.3 GPa, and ∼5.5 MPa m1/2, respectively; while XRD and SEM shows no adverse tetragonal to monoclinic phase transformation and grain growth, respectively. This study demonstrates that 3D printing of granular 3Y-TZP ceramic feedstock via screw-based material extrusion technique is feasible even with high solid loadings, which is usually difficult to fabricate into flexible filaments and print due to high viscosity.  相似文献   

20.
Digital light processing (DLP) can produce small series ceramic parts with complex geometries and tiny structures without the high cost of molds usually associated with traditional ceramic processing. However, the availability of feedstock of different ceramics for the technique is still limited. Mullite-zirconia composites are refractory materials with diverse applications, nevertheless, their 3D printing has never been reported. In this work, alumina and zircon were used as raw materials for additive manufacturing by DLP followed by in situ mullite and zirconia formation. Thus, coarse zircon powder was milled to submicrometric size, alumina-zircon photosensitive slurries were prepared and characterized, parts were manufactured in a commercial DLP 3D printer, debound, and sintered at different temperatures. The printed parts sintered at 1600 °C completed the reaction sintering and reached a flexural strength of 84 ± 13 MPa. The process proved capable of producing detailed parts that would be unfeasible by other manufacturing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号