首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spherical SiC powders were prepared at high temperature using commercial SiC powders (4.52 µm) with irregular morphology. The influence of spherical SiC powders on the properties of SiC porous ceramics was investigated. In comparison with the as-received powders, the spheroidized SiC powders exhibited a relatively narrow particle size distribution and better flowability. The spheroidization mechanism of irregular SiC powder is surface diffusion. SiC porous ceramics prepared from spheroidized SiC powders showed more uniform pore size distribution and higher bending strength than that from as-received SiC powders. The improvement in the performance of SiC porous ceramics from spheroidized powder was attributed to tighter stacking of spherical SiC particles. After sintering at 1800 °C, the open porosity, average pore diameter, and bending strength of SiC porous ceramics prepared from spheroidized SiC powder were 39%, 2803.4 nm, and 66.89 MPa, respectively. Hence, SiC porous ceramics prepared from spheroidized SiC powder could be used as membrane for micro-filtration or as support of membrane for ultra/nano-filtration.  相似文献   

2.
《Ceramics International》2023,49(20):32727-32738
Insufficient permeability and membrane fouling significantly influence the efficiency of ceramic microfiltration (MF) membranes in oil/water emulsion treatment. In this study, a high-flux whisker layer ceramic MF membrane with super-hydrophilicity was successfully fabricated through gel-spin coating method and a low-temperature oxidation method, which was used to separate oil/water emulsion. The effects of the whisker layer and surface wettability were systematically investigated, and the mechanism of in-situ gelling and pore size distribution was proposed. The super-hydrophilic ceramic MF membrane with an average pore size of 250 nm exhibited a high gas flux of 934 m3/(m2·h·bar) and excellent pure water flux of 9754 L/(m2 h bar). Even after a long-term circulating filtration process, the super-hydrophilic ceramic MF membrane still maintained a high water flux of over 50 L/(m2·h) at a transmembrane pressure of 5 KPa during the treatment of oil-in-water emulsion with a concentration of 1000 mg/L. Overall, the developed ceramic MF membrane demonstrated high permeability and excellent anti-fouling performance, making it a promising candidate for oil/water emulsion wastewater treatment.  相似文献   

3.
《Ceramics International》2023,49(8):12372-12380
In this paper, spray granulation and radio frequency plasma spheroidization were used to obtain spherical WC-Co powder for laser powder bed fusion from mixed WC and Co powder. The effects of solid content and polyvinyl alcohol content of the slurry on granulated powder were studied. Then the spheroidization effects of different granulated WC-Co powders were investigated and compared. Results show that the granulated powder obtained from the slurry with solid content of 65 wt% and polyvinyl alcohol content of 2.5 wt% has the best performance after plasma spheroidization, whose flowability and apparent density are 10.20 s/50g and 6.76 g/cm3, respectively. Moreover, W and C distribute uniformly in the spheroidized WC-Co powder while the Co element is mainly distributed in the gaps of tungsten carbide. It is also noted that W2C, free carbon and Co3W3C appear in the spheroidized WC-Co powders due to the decomposition of WC during the plasma spheroidization process. Furthermore, the decomposition of WC-Co powder particles with smaller size is more serious, which leads to the presence of black and white particles with significantly different carbon content distribution in the spheroidized powder.  相似文献   

4.
New microfiltration membranes from mineral coal fly-ash material are obtained using ceramic method. Paste from mineral coal fly ash (obtained by calcinations at 800 °C of non-grinded mineral coal) is extruded to elaborate a porous tubular configuration used as supports. The support heated at 1125 °C, shows an average pore diameter and porosity of about 4.5 μm and 51%, respectively. The properties in terms of mechanical and corrosion resistances are very interesting. The elaboration of the layer based on fly-ash powder (obtained by sintering at 700 °C of a finely grinded mineral coal) is performed by slip-casting method. The heating treatment at 800 °C leads to an average pore size of 0.25 μm. The water permeability determined of this membrane is 475 L/h m2 bar. This membrane can be used for crossflow microfiltration. The application to the treatment of the dying effluents generated by the washing baths in the textile industry shows an important decrease of turbidity (inferior to 1 NTU), of chemical oxygen demand (COD) values (retention rate of about 75%) and a total color removal. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 L h−1 m−2). So, it seems that the prepared membrane is suitable for such wastewater treatment.  相似文献   

5.
In order to improve the gas permeability and thermal shock resistance of the ceramic membranes applied in high temperature gas-solid separation techniques, fused silica and graphite particles were used as the primary raw material and pore-former agent, and the spray coating based-on PVA sealing was applied to prepare the separation membrane. These approaches remarkably decreases filtration resistance by increasing support permeability and reducing the intrusion of ceramic membrane forming particles into the support as well as the thickness of the membrane. The fabricated membrane had an average pore diameter of 9.85?μm and a gas permeability value of 8.2?×?104?m3/(m2 h bar), its dust removal efficiency reached 98.6%.  相似文献   

6.
The manufacturing and optimization of centrifugally casted ceramic membrane supports is presented. For the optimization, the effect of three different powder sizes (0.25, 0.31 and 0.61 μm) and a sintering temperature range between 1050 and 1400 °C was investigated. The ceramic tubes were characterized according to tube dimensions, mercury porosimetry, water permeability, SEM and mechanical strength. It was shown that the centrifugal casting technique delivers highly reproducible support properties. A novel strength testing apparatus was developed to determine the mechanical strength of the ceramic tubes. It was found that the strength varied between 3300 MPa and 300 MPa, depending on the porosity of the supports. With increased sintering temperature, water permeability and porosity decreased, while strength and linear shrinkage increased. The pore diameter of the supports produced by the 0.31 and 0.61 μm powders decreased, while that of the 0.25 μm powders remained constant (72 nm) with increasing sintering temperature. The 0.61 μm powder sintered at the lowest sintering temperature resulted in the support with the highest porosity, pore diameter and porosity, but the lowest mechanical strength and linear shrinkage. An overall improvement concerning pure water permeability was seen when the support in this study was compared to our own previous studies and similar studies in literature.  相似文献   

7.
In this study, an original microfiltration tubular membrane (M1) made from local Moroccan Perlite was used to treat three wastewater types: effluents coming from beamhouse section of tannery (effluent A), textile effluent coming from jeans washing process (effluent B), and dicing wafer effluent generated by electronic industries (effluent C). The prepared membrane is composed of two layers of Perlite with two different granulometries: a macroporous support with a pore diameter centered near 6.6 μm and porosity of about 42%, and a microfiltration layer, performed by slip casting method, with a mean pore size of 0.27 μm. The water permeability determined of the membrane is 815 L/h m2 bar. Tangential microfiltration using Perlite membrane proved to be effective in removing pollutants from the three effluents with almost the same efficiencies than that obtained with a commercial Alumina membrane (M2) with a pore diameter of 0.2 μm and a water permeability of 1022 L/h m2 bar. Tangential microfiltration process operated at lower pressure (1 bar) was seen to remove turbidity from the three feeds completely. Perlite membrane allowed significant reduction of Chemical Oxygen Demand COD (50–54%) and Total Kjeldahl Nitrogen TKN (56%) of beamhouse effluent. It showed a significant decrease of COD (54–57%) and a complete discoloration of textile wastewater.  相似文献   

8.
包覆型Al_2O_3粉体制备低温烧成多孔陶瓷膜支撑体   总被引:3,自引:0,他引:3  
采用22μmα-Al2O3为骨料,0.5μmα-Al2O3为烧结助剂,一是采用简单机械混合得到上述2种氧化铝的混合粉体,二是通过粉体表面修饰的方法,将0.5μmα-Al2O3包覆在22μmα-Al2O3表面得到包覆型氧化铝粉体。采用上述2种原料,通过干压成型法制备出片状多孔支撑体,考察了不同烧成温度下2种粉体路线制备出的多孔支撑体的弯曲强度、平均孔径、孔隙率和纯水通量。结果表明:在获得相同支撑体性能的前提下,以包覆型氧化铝粉体为原料制备出的支撑体的烧成温度大大低于采用简单机械混合后粉体制备支撑体的。在1550℃的烧成温度下,包覆型氧化铝粉体制备的支撑体的机械强度为34.2MPa,孔隙率为34%,平均孔径为2.34μm,纯水通量为205m3/(m2·h·MPa)。  相似文献   

9.
The International Simple Glass (ISG) spherical particles were prepared by Ar–H2 radio-frequency (RF) plasma, the effect of experimental parameters on the volatilization and size distribution of spherical particles was studied. The results show that the spherical powders can be obtained by RF plasma. The spheroidized powders (112 μm) have a smaller diameter than starting particles (124 μm). The high spheroidization (98%) was achieved under low flow rate of carry gas and low feed rate. In addition, the volatilization of B2O3 and Na2O are 23.48% and 56.36%, respectively. The higher feed rate and flow rate of carry gas, the lower volatilization of B2O3 and Na2O and well-spheroidization rate. Meanwhile, the particle surface is not completely smooth at low flow rate of carry gas. The distribution of elements was studied by Electro-probe Microanalyzer (EPMA), which shows the distribution of element is nearly homogeneous that provides a possibility for subsequent research.  相似文献   

10.
《Ceramics International》2023,49(12):19798-19805
Herein, we report an in-situ reaction-bonded SiC membrane sintered at low temperature using a solid waste (i.e. coal gangue) as the sintering aid to form strong neck connections. The effects of sintering temperature and coal gangue proportion on their properties regarding pore size, open porosity, bending strength and pure water permeability were investigated. The single-channel tubular SiC membrane sintered at 1300 °C with a coal gangue proportion of 12 wt% was optimal, exhibiting an average pore size of 2.78 μm, a open porosity of 47.08%, a bending strength of 34.01 ± 1.3 MPa and a high water permeability of 83967 L m−2 h−1 bar−1. The membrane could completely reject D50 = 0.87 μm SiC solids and presented a steady-state water permeability of 458 L m−2 h−1·bar−1. The SiC membrane could be regenerated through ultrasonication and its steady-state water permeability was almost unchanged for 3 cycles, proving its mechanical robustness. This work may appeal to the practical low-cost production of high-performance SiC membranes.  相似文献   

11.
Ceramic microfiltration membranes (MF) with narrow pore size distribution and high permeability are widely used for the preparation of ceramic ultrafiltration membranes (UF) and in wastewater treatment. In this work, a whisker hybrid ceramic membrane (WHCM) consisting of a whisker layer and an alumina layer was designed to achieve high permeability and narrow pore size distribution based on the relative resistance obtained using the Hagen-Poiseuille and Darcy equations. The whisker layer was designed to prevent the penetration of alumina particles into the support and ensure a high porosity of the membrane, while the alumina layer provided a smooth surface and narrow pore size distribution. Mass transfer resistance is critical to reduce the effect of the membrane layers. It was found that the resistance of the WHCM depended largely on the alumina layer. The effect of the support and whisker layer on the resistance of the WHCM was negligible. This was consistent with theoretical calculations. The WHCM was co-sintered at 1000?°C, which resulted in a high permeability of ~?645?L?m?1 h?1 ;bar?1 and a narrow pore size distribution of ~?100?nm. Co-sintering was carried out on a macroporous ceramic support (just needed one sintering process), which greatly reduced the preparation cost and time. The WHCM (as the sub-layer) also showed a great potential to be used for the fabrication of ceramic UF membranes with high repeatability. Hence, this study provides an efficient approach for the fabrication of advanced ceramic MF membranes on macroporous supports, allowing for rapid prototyping with scale-up capability.  相似文献   

12.
Highly spherical particles of titanium carbide (TiC) have been produced by in-flight heat processing of irregularly shaped TiC powders in an aerosol reactor under argon-hydrogen and argon-helium induction thermal plasma. The spherical powders obtained by the plasma treatment consist of unagglomerated and uniform particles with mean diameters between 25 and 28.5 μm, which is smaller than the original TiC particle mean diameters (29.5 μm) because of partial evaporation of the particles during the plasma treatment. The spheroidization ratio of the treated TiC powders increases with the increase of hydrogen flow rate in plasma gases and the reduction of powder feeding carrier gas flow rate. Under certain processing conditions, the TiC powders have been completely spheroidized. The morphology and structure of individual spherical particles were examined and their formation mechanism was discussed based on calculation of heat transfer kinetics of the particles in the thermal plasma.  相似文献   

13.
《Ceramics International》2022,48(7):9426-9433
A gradient porous ceramic membrane with surface super-hydrophilic and underwater super-oleophobic performance was prepared by combining hydrogel directional freezing method and low temperature oxidation process. The effects of solid contents and sintering temperature on the ceramic membrane matrix were examined. The reaction time and synthesis temperature on the TiO2 nanowire array were also evaluated. In addition, the related effects on pore size distribution, permeation flux, contact angle, and oil-in-water emulsion separation were systematically investigated. The ceramic membrane matrix pore size changed from 0.5 μm to 25 μm gradually, indicating the gradient structure controlled by the growth of ice. The super-hydrophilic and underwater super-oleophobic performance of ceramic membrane surface was obtained with surface modification by TiO2 nanowire array, and the surface water contact angle and underwater oil contact angle were less than 5° and over 158°, respectively. The bonding strength between TiO2 nanowire and ceramic membrane matrix was high enough to withstand ultrasonic waves. The ceramic membrane modified with TiO2 nanowire array was used for 1000 ppm diesel oil-in-water emulsion separation, and the stable separation efficiency and flux were about 97% and 100–200 L/(m2 h bar) even after 10 filtration cycles.  相似文献   

14.
The increasing sophistication of powder metallurgy processing, together with the greater demands on final product quality have led to an increased demand for metal powders of high quality. In this paper we report the successful preparation of two spheroidized metal powders, —electrolytic copper powder mixed with Al2O3 particles and hydrogenation-dehydrogenation (HDH) titanium powder — produced by high speed impact using a particle composite system (PCS). Experimental results show that irregularly shaped metal particles can be processed into spherical particles by use of this process. The spheroidizing process increases bulk density of Ti powder from 1.15 g/cm3 to 1.73 g/cm3 and its fluidity index from 46 to 71, improves surface morphology of either single Ti particles or composite Al2O3/Cu particles and molding properties of bulk powders. The characteristics of sintered parts made from spheroidized powders are superior to those of products made from the untreated irregular powders.  相似文献   

15.
The development and the characterisation of a new support for ultrafiltration membranes prepared from the mud of the hydro cyclone laundries of phosphate are presented. The choice of this material is based mostly on its low cost (considering its abundance in the Tunisian ores). Indeed, the use of this material for membrane preparation allows a good management of this subproduct which represents a major problem in phosphate transformation industry due to the resulting environmental pollution.Paste from the mud of the hydro cyclone laundries of phosphate was extruded and heated at 900 °C to produce a porous tubular support having an average pore diameter and a porosity of about 1.05 μm and 39%, respectively. The properties regarding to mechanical and chemical resistances are very interesting. The deposition of the ultrafiltration layer from zirconium material was performed by slip-casting method. The heating treatment at 700 °C leads to an average pore size of 5 nm. The determination of the water permeability shows a value of 86 l/h m2 bar. This membrane can be used for crossflow ultrafiltration. The application of the cuttlefish effluent treatment shows an important decrease of turbidity, inferior to 1.5 NTU and chemical organic demand (COD), retention rate of about 60%. So, it seems that this membrane is suitable to use for wastewater treatment.  相似文献   

16.
《Ceramics International》2016,42(12):13796-13804
Recently, porous ceramic membranes have become a subject of significant interest due to their outstanding thermal and chemical stability. To reduce the high manufacturing costs of these porous ceramic membranes, recent research has focused on the utilization of inexpensive natural materials. However, there have not been any well-established direct comparisons of the membrane properties between typical alumina-based membranes and novel natural material-based membranes. Therefore, we compared alumina-coated alumina support layers (with average pore sizes ranging from 0.10 µm ~0.18 µm), alumina-coated diatomite-kaolin composite support layers (with an average pore size of 0.12 µm), and alumina-coated pyrophyllite-diatomite composite support layers (with an average pore size of 0.11 µm) via the dip-coating method and subsequent heat treatment ranging from 1200 °C–1400 °C for 1 h. The pure water permeability of the alumina-coated diatomite-kaolin composite support layer and the alumina-coated pyrophyllite-diatomite composite support layer was found to be approximately 2.0×102 L m−2 h−1 bar−1, which is similar to that of an alumina-coated alumina support layer. Therefore, we suggest that the average pore size of an alumina-coated natural material-based support layer can be effectively controlled while exhibiting acceptable water permeability.  相似文献   

17.
A new graded-porosity FeAl alloy can be fabricated through Fe and Al elemental reactive synthesis. FeAl alloy with large connecting open pores and permeability were used as porous supports. The coating was obtained by spraying slurries consisting of mixtures of Fe powder and Al powder with 3-5 μm diameter onto porous FeAl support and then sintered at 1100 °C. The performances of the coating were compared in terms of thickness, pore diameter and permeability. With an increase in the coating thickness up to 200 μm, the changes of maximum pore size decreased from 23.6 μm to 5.9 μm and the permeability decreased from 184.2 m3 m− 2 kPa− 1 h− 1 to 76.2 m3 m− 2 kPa− 1 h− 1, respectively, for a sintering temperature equal to 1100 °C. The composite membranes have potential application for excellent filters in severe environments.  相似文献   

18.
The possibility to consolidate alumina powder stabilized Pickering emulsions of paraffin oil in ethanol by means of electrophoretic deposition (EPD) into freestanding porous objects is reported. The pore forming paraffin is extracted from the consolidated powder compact by means of evaporation prior to sintering. The sintered ceramics contain spherical pores with a diameter that can be tuned from 200 μm to 20 μm. Both open and closed porosities can be obtained by altering the emulsion composition. Since no pore forming fugitive solid organic binder is used, the delicate and time-consuming debinding step during processing is eliminated.  相似文献   

19.
Low cost asymmetric tubular ceramic membrane was developed from kaolino-illitic clay collected from the region of Medenin (Tunisia). The obtained membrane was designed to be used for ultrafiltration. The effect of pore forming agent on the plasticity, porosity, pore size distribution, mechanical strength, and permeability was evaluated. The support was performed by extrusion using the raw clay and olive pomace (OP) as pore forming agent. The effect of the use of OP was noticeable; it improved the plasticity of the paste. Also it helped to ameliorate both permeability and porosity of the obtained supports. Top layer was prepared using acid activated clay suspension. The obtained membrane had gas permeability of about 13 cm3.s−1.cm−2.bar−1 at a pressure of 1.5 bar and water flux of 1700 L.h−1.m−2 at a pressure of 1 bar. The final membrane was successfully used to eliminate the fat present in a solution containing 10% of milk. Regeneration of the used membrane was carried out by calcination at 550°C. The performances of the used membrane were recovered by 97% after regeneration.  相似文献   

20.
《Ceramics International》2017,43(10):7736-7742
SiC has excellent structural and mechanical properties and also has excellent properties related to membrane performance. High processing temperature increases the costs of SiC products and thus limits their use. In this study, we fabricated SiC-based ceramic support layers using a clay-bonding technique. Kaolin, a well-known clay, was used as a binder for silicon-carbide particles. Three different SiC powders were used on the basis of particle size for fabrication by the extrusion method, which converts powders into flat tubular form. The resultant supports are sintered at 1300–1500 °C in air and evaluated for their structural properties, pore characteristics and permeability. It is evident from the study that we can produce a support layer with small-sized SiC powder that has a high open porosity and high strength with a smaller pore size and lower permeability in comparison with layers produced with a large-sized starting SiC powder. Additionally, the produced support layer could be used as a stand-alone membrane for 1 µm particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号