首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mineral transition mechanism and self-pulverization property of the sintered products in the Ca2Al2SiO7-CaO system were systematically studied using pre-synthesized gehlenite determined by XRD, SEM, FTIR and particle size analyses. The minerals of Ca12Al14O33, CaAl2O4, Ca3SiO5 and Ca2SiO4 are formed by the direct reactions of Ca2Al2SiO7 with CaO. CaAl2O4 reacts with CaO to form Ca12Al14O33 or Ca3Al2O6, while Ca3SiO5 reacts with Ca2Al2SiO7 to form Ca2SiO4 and calcium aluminate compounds. The sintered products mainly contain CaAl2O4, Ca12Al14O33 and Ca2SiO4 at 1350?°C or above 1500?°C when the molar ratio of CaO to Al2O3 is 1.0. Increasing the sintering duration or the CaO consumption promotes the transition of Ca2Al2SiO7 to Ca2SiO4 and calcium aluminate compounds when sintered at 1350?°C, which accordingly improves the self-pulverization property of the sintered products. The formed minerals of Ca12Al14O33, CaAl2O4 and Ca2SiO4 transform into Ca2Al2SiO7 again when the sintering temperature is between 1400?°C and 1450?°C, and the corresponding self-pulverization property of the sintered products deteriorates sharply.  相似文献   

2.
The mineral formation-transition mechanism, microstructure morphology evolution, pulverization property and chemical reactivity of calcium sulpho-aluminate with sodium dopant are systematically studied with the molar ratio of CaO to Al2O3 is 0.8, the molar ratio of CaO to SiO2 is 1.5, the mass ratio of Al2O3 to SiO2 is 2.0, and the SO3 accounts for 4%. The results show that sodium dopant could promote 3CaO·3Al2O3·CaSO4, CaO·2Al2O3 and 2CaO·Al2O3·SiO2 transform into 2CaO·SiO2, CaO·Al2O3, 12CaO·7Al2O3 and 2Na2O·3CaO·5Al2O3, and it also can decrease the decomposition temperature of reactive materials and the initial phases formation temperature significantly. Sodium diffusion can destroy the clear grain boundary of calcium aluminate and calcium silicate phases, change the macro-microstructure morphology, improve the crystalline degree of the samples, and then improve the pulverization and alumina leaching property. However, excessive sodium dopant can decrease the melting temperature, inhibit the transformation process of 2CaO·SiO2 from β to γ, and then deteriorate the pulverization property significantly again.  相似文献   

3.
In this work the impact of Al2O3 amount on the synthesis (200?°C; 4–8?h) of calcium aluminium silicate hydrates (CSAH) samples and their influence on the early stage hydration of calcium aluminate cement (CAC) was examined. It was found that the amount of Al2O3 plays an important role in the formation of calcium aluminate hydrates (CAH) because in the mixtures with 2.7% Al2O3 only calcium silicate hydrates (CSH) intercalated with Al3+ ions were formed. While in the mixtures with a higher amount of Al2O3 (5.3–15.4%), calcium aluminate hydrate – C3AH6, is formed under all experimental conditions. It is worth noting that the largest quantity of mentioned compound was obtained after 4?h of hydrothermal treatment, in the mixtures with 15.4% of Al2O3. It was proved that synthesized C3AH6 remain stable up to 300?°C and at higher temperature (945?°C) recrystallized to mayenite (Ca12Al14O33), which reacted with the rest part of CaO and amorphous structure compound, resulting in the formation of gehlenite (Ca2Al2SiO7). Moreover, the synthesized C3AH6 addition induced the early stage of CAC hydration. Besides, in the samples with an addition, the induction period was effectively shortened: in a case of pure CAC (G70) paste, hydration takes about 6–6.5?h, while with addition – only 2–2.5?h. The synthesized and calcinated compounds was characterized by using XRD and STA analysis.  相似文献   

4.
Calcium hexaluminate (CaAl12O19) is the most alumina-rich intermediate compound of the CaO–Al2O3 system. The formation of this aluminate is produced by the reaction between calcium oxide and alumina. Intermediate compounds with lower alumina content (CaAl2O4, CaAl4O7,…) are formed during the synthesis of calcium hexaluminate with increasing temperature. With the aim to obtain dense and pure calcium hexaluminate by reaction sintering method using Spark Plasma Sintering (SPS) the variation of sintering parameters was studied. Final densities close to the theoretical and calcium hexaluminate formation rates over 93% were achieved by this method. Once the sintering parameters were optimized, a study of the flexural strength and the hardness of the samples were performed.  相似文献   

5.
The chemical reactions involved in the corrosion of polycrystalline alumina (Al2O3) and calcium hexaluminate–hibonite (CaAl12O19) ceramics by two dicalcium silicate slags with additions of fluorspar (CaF2) were studied using a hot-stage microscopy (HSM) up to 1600 °C. The corrosion mechanism was investigated on post-mortem corroded samples and the phases formed at different stages of the dissolution process were characterised by reflected optical light microscopy (RLOM) and scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS) microanalysis system.The attack of the fused slags on dense alumina substrates takes place through an interdiffusion mechanism producing successive layers of calcium aluminates. In porous hibonite samples chemical interactions were observed although only a layer of calcium dialuminate was formed. A sintering process in presence of liquid phase was also detected behind the reaction interphase.Thermodynamic calculations, based on the Al2O3–CaO–SiO2, Al2O3–CaO–SiO2–MgO, and Al2O3–CaO–SiO2–CaF2 phase equilibrium were used to further knowledge of the corrosion mechanism.  相似文献   

6.
《Ceramics International》2019,45(13):16166-16172
Cr2O3 is a well-known corrosion resistant oxide used in refractory applications. However, it can oxidize into toxic and water-soluble Cr(VI) compounds upon reaction with calcium aluminate cement phases in the presence of oxygen, which subsequently causes disposal problems after use. This study describes the extent to which chromium in the spinel Mg(Al,Cr)2O4 phase can be oxidized to Cr(VI) when it reacts with the calcium aluminate cement phases C12A7, CA, CA2 and free CaO at 1300 °C in air, using XRD, XPS and leaching tests (TRGS 613 standard) as analytical tools. On reaction with CaO, the Mg(Al,CrIII)2O4 spinel mainly transformed into hauyne (Ca4Al6CrVIO16) and Ca5Cr3O12 which contains both Cr(IV) and Cr(VI). The reaction of C12A7 and CA with the spinel phase also resulted in the formation of Ca4Al6CrO16. Conversely, the reaction of Mg(Al,CrIII)2O4 spinel with CA2 resulted in the formation of only a trace amount of Cr(VI). Water-soluble Cr(VI) leached in large quantities (>100 mg/L) from samples where the Mg(Al,CrIII)2O4 reacted with either C12A7 or CA. Almost no Cr(VI) leached from the sample when Mg(Al,CrIII)2O4 reacted with CaO, using the standard TRGS 613 leach test, but a significant amount of Cr(VI) was released into solution when leached with a HCl solution for 12 h. Both Cr(IV) and Cr(VI) present in the Ca5Cr3O12 dissolved into acidic solution. Only a small amount of Cr(VI) leached from the sample that resulted when spinel was reacted with CA2, even after a prolonged HCl leach. Cr(III) in spinel Mg(Al,Cr)2O4 is very stable and does not leach in either distilled water or acidic solution.  相似文献   

7.
《应用陶瓷进展》2013,112(7):384-390
Pure β-dicalcium silicate and monocalcium aluminate powder were prepared by Pechini method. A series of calcium silicate/calcium aluminate cements (CSC/CAC) were prepared. The setting time, crystalline phases, microstructures, compressive strength, cells attachment and silicon release of the cements were investigated. The results indicate that the setting time of CSC/CAC was shorter than that of either CSC or CAC. The hydration products in CSC/CAC composite are gehlenite (Ca2Al2SiO7·8H2O), calcium aluminate hydrate (Ca3Al2O6?×?H2O), and katoite (Ca2Al2O6·6H2O). Platelike crystals were found in the microstructure. The liquid to powder ratio has a significant effect on the porosity and the strength of CSC/CAC. The MC3T3 cells attached well to the surfaces of CSC/CAC. However, the cells proliferation on the surface of 7S3A was better than that of 3S7A due to its higher silicon release. In general, CSC/CAC exhibits good biocompatibility and relative high strength, and may be suitable for some non-load bearing bone restorative applications.  相似文献   

8.
The glasses with compositions derived from the eutectic composition [37.78 (Y3Al5O12)·62.22 (SiO2)] of the quasi-binary glass system (Y3Al5O12)-(SiO2) with addition of up to 20 mol.% CaO were investigated as model grain boundary phases for Si3N4 ceramics. The influence of CaO as model impurity on the physical properties of the glass (density, thermal expansion) and on the crystallisation behaviour was studied. Although the initial composition of the basic glass was that of yttrium-aluminium garnet (Y3Al5O12–YAG), no crystalline YAG was detected. Apart from yttrium disilicate (Y2Si2O7), anorthite (CaAl2Si2O8), tricalcium aluminate (Ca3Al2O6), and calcium yttrium oxide silicate (Ca4Y6O(SiO4)6), a new phase was detected, not found in the powder diffraction file (PDF) database. Cavities were formed within the devitrified glass due to the volume contraction after crystallisation. Possible implications for the mechanical properties of Si3N4 ceramics sintered with addition of Y2O3–Al2O3 are discussed in terms of the observed compositional dependences of the physical properties of CaO–Y2O3–Al2O3–SiO2 glasses.  相似文献   

9.
The Al2O3–CaO–SiO2 system provides the basis for describing many important chemical processes. Although the system has previously been extensively studied, recent advances in experimental technique have provided the opportunity to obtain accurate liquidus measurements in the low‐silica region at fixed temperatures. The experimental procedures involve equilibration of high‐purity oxide powder mixtures at selected temperatures, rapid quenching, and accurate measurement of phase compositions using electron probe X‐ray microanalysis. The liquidus isotherms have been determined at selected temperatures between 1503 and 1873 K in the anorthite, gehlenite, pseudowollastonite, corundum, CaAl12O19, CaAl2O6, lime, Ca3SiO3, and Ca2SiO4 primary phase fields. The results are compared with currently available thermodynamic model predictions of the phase chemistry.  相似文献   

10.
《Ceramics International》2022,48(18):25958-25967
The formation thermodynamics, phase transition and stability of sodium calcium silicate compounds under different calcination parameters in the Na2O–CaO–SiO2 system were studied using XRD, FTIR and SEM-EDS methods. As the Na2O/SiO2 ratio increases from 0.3 to 0.7 when the CaO/SiO2 ratio is 1.0, the formation sequence of sodium calcium silicate compounds is Na2Ca3Si2O8→Na6Ca3Si6O18→Na2Ca2Si2O7→Na2CaSiO4; as the CaO/SiO2 ratio increases from 0.3 to 1.2 when the Na2O/SiO2 ratio is 0.5, the formation sequence is Na6Ca3Si6O18→Na2Ca2Si2O7→Na2Ca3Si2O8. As the most stable sodium calcium silicate compound, Na6Ca3Si6O18 forms by the solid-state reaction of preformed Na2SiO3 with CaO and SiO2, while increasing the calcination temperature and holding time can promote its crystal stability. The decomposition of Na6Ca3Si6O18 in sodium aluminate solution follows the mixed control of the film diffusion and chemical reaction, and the corresponding activation energy is between 40 and 41 kJ/mol.  相似文献   

11.
Calcium aluminate with CaAl2O4 (CA) nanofiber structures was fabricated through a facile solid-phase combustion synthesis method with raw materials of CaO2, CaCO3, Al, and Al2O3 in Ar atomosphere at a pressure of 0.1 MPa. The results indicated that the relative content of CA decreased, but that of Ca12Al14O33 (C12A7) increased with the increase of r-value from 0 to 0.5 (r is molar substitution coefficient of CaCO3 for CaO2). Interestingly, CA nanofibers with tens of micrometers in length and about 200 nm in diameter were observed in the combustion products with r = 0.2, 0.3, 0.4, respectively. The more nanofibers can be found in the products, as the content of CaCO3 in raw material ratios increased. And the yield of nanofibers in the combustion product with r = 0.4 is the highest. The typical round droplet on head of nanofiber indicated that the growth process of nanofibers was governed by vapor-liquid-solid (VLS) mechanism with base growth mode. It is proposed that both higher reaction temperature and reducing atmosphere are requirements for the growth of CA nanofiber during the process of combustion synthesis. The nanofiber cannot be generated in the samples r0, and r5, because the gaseous Ca is absent due to oxidizing atmosphere and lower reaction temperature, respectively.  相似文献   

12.
We report the effect of Cu2+ ion on CaAl2O4 with different molar concentrations of 0.0, 0.4 and 0.8 M prepared by simple combustion method. The materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and scanning electron microscopy (SEM). DC electrical conductivity has also been measured to study the electrical behavior of the materials. The XRD patterns confirm the formation of single-phase CaAl2O4 along with some impurity phases like CaAl4O7, CaAl12O19 and Ca12Al14O33. The FT-IR spectra show the stretching and bending vibrations of the synthesized compounds. DC electrical conductivity of the Ca1−xCuxAl2O4 is found to vary from 26.46 × 10−4 to 515.68 × 10−4 S cm−1 for x = 0.0 to x = 0.8 at the measuring temperature of 1000 °C. SEM images show the morphological features of the compounds.  相似文献   

13.
Equilibrium diagrams for the joins CaAl4O7-MgAl2O4, CaAl4O4-Ca2Al2SiO7-MgAl2O4, and Ca2Al2O4–Ca2Al2SiO7-MgAl2O4 were determined by the classical quenching method and hot stage microscopy. Liquidus relations in the quaternary subsystem are discussed. Two univariant curves are located within the composition tetrahedron. The quaternary invariant point is a peri-tectic. Technological application of results is indicated.  相似文献   

14.
In the CaO-SiO2-Al2O3-Fe2O3 pseudoquaternary system, the solid solutions of Ca2(AlxFe1−x)2O5, with x<0.7 (ferrite), Ca2SiO4 (belite), Ca3Al2O6 (C3A) and Ca12Al14O33 (C12A7), were crystallized out of a complete melt during cooling at 8.3 °C/min. Upon cooling to 1370 °C, both the crystals of ferrite with x=0.41 and belite would start to nucleate from the melt. During further cooling, the x value of the precipitating ferrite would progressively increase and eventually approach 0.7. At ambient temperature, the ferrite crystals had a zonal structure, the x value of which successively increased from the cores toward the rims. The value of 0.45 was confirmed for the cores by EPMA. The chemical formula of the rims was determined to be Ca2.03[Al1.27Fe0.68Si0.02]Σ1.97O5 (x=0.65). As the crystallization of ferrite and belite proceeded, the coexisting melt would become progressively enriched in the aluminate components. After the termination of the ferrite crystallization, the C3A and belite would immediately crystallize out of the melt, followed by the nucleation of C12A7. The C12A7 accommodated about 2.1 mass% Fe2O3 in the chemical formula Ca12.03[Al13.61Fe0.37]Σ13.98O33, being free from the other foreign oxides (SiO2 and P2O5).  相似文献   

15.
Three types of calcium aluminosilicate, Ca12Al14O33 (C12A7), Ca12Al14Si2O34 (C12A6), and Ca12Al10Si4O35 (C12A5), were prepared by calcining the respective hydrothermally synthesized hydrogarnet, Ca3Al2(OH)12, Ca3Al2(SiO>4)1/3(OH)32/3, and Ca3Al2(SiO4)0.8(OH)8.8. Different amounts of superoxide (O2-) and peroxide (O22-) were occluded in the lattice of these calcium aluminosilicates. No activity improvement was observed for the oxidation of propylene and benzene by increasing the amounts of (O2-) and (O22-).  相似文献   

16.
The mineralizing effect of 0.5% F? as CaF2 on the high-temperature reactions in the quaternary system CaOAl2O3Fe2O3SiO2 was studied in the presence of minor amounts of MgO and K2SO4. The partitioning of fluorine between the calcium aluminate and calcium silicate phases was determined in relation to the burning temperature and the presence of MgO.  相似文献   

17.
Experimental studies are reported on the CaO-rich portions of the system CaO-A?2O3-SiO2-SO3 in the temperature range 950°–1150°C. Six four-phase and 18 three-phase essemblages have been found. These define the equilibria between CaO, Ca2SiO4, Ca3A?2O6, Ca12A?14O33, CaA?2O4, calcium silicosulphate (Ca5Si2(SO4)O8) and aluminosulphate, Ca4A?6(SO4)O12. The equilibria above 1175°, where Ca3SiO5 becomes stable, are predicted. Possible departures from equilibrium during clinkering are discussed.  相似文献   

18.
Quantification of oxygen capture in mineral matter during gasification   总被引:1,自引:0,他引:1  
It has been observed that during the transformation of minerals at higher temperatures (>1000 °C), mineral species are formed containing a high number of oxygen molecules, i.e. gehlenite (Ca2Al2SiO7), mullite (Al6Si3O15), margarite (CaAl4Si2O10(OH)2) and almandine (Fe3Al2Si3O12).Results of the coal sources evaluated in this investigation indicated significant differences in mineral elemental composition, i.e. the CaO content varied between 5 mass % and 10 mass %, the Fe2O3 content varied between 1.6 mass % to more than 5 mass %, as well as differences in the TiO2, P2O5 and MgO content. The coal sources producing the highest concentration of Ca-Al-Si species (CaAl2Si2O8 anorthite and CaAl4Si2O10(OH)2 margarite), which crystallized from the slag-liquid phase during the combustion stage, also contained the highest amount of acidic components or highest percentage of kaolinite. The highest concentration of mullite and free SiO2 after the gasification reaction (before the combustion zone), also resulted in the highest concentration of Ca-Al-Si compounds forming during the oxidation phase. The free-SiO2 in the mineral structure of the coal sources resulted then in the formation of mineral structures with Mg, Na or Ca when present in the mineral structure, to form new mineral compounds such as KAl3Si3O10(OH)2 (muscovite), Mg5Al2Si3O10(OH)8 (clinochlore), or other high oxygen molecule-containing mineral compounds. Thus, if free-SiO2 was not present after the gasification phase, and mostly taken up in the form of anorthite (due to high or higher CaO contents or Fe-contents in high Fe-containing coal sources), the concentration of Si-oxygen capture compounds are relatively low.An acceptable linear correlation between oxygen capture tendencies (increase in mineral matter content during the combustion phase) versus CaO-content was obtained with the South African coal sources evaluated. This confirmed the observations obtained based on HT-XRD and FactSage modelling. It can be concluded that the linear model to predict oxygen capture behavior from CaO-content is acceptable and can be used as a predictive tool. The SiO2 content, for example, has an inverse affect on oxygen trends up to a specific concentration of CaO in the coal. However, this model is only valid for the coal types tested (South African Highveld coal sources), and additional test work will have to be conducted for other coal types, i.e. northern hemisphere coal.  相似文献   

19.
Calcium aluminate cement was prepared by combustion synthesis with CaO2, Al, and Al2O3 as raw materials. The effects of CaO/Al2O3 (C/A) molar ratios in raw materials on the phase compositions and morphologies of calcium aluminate were investigated in detail. It was found that when the C/A reduced from 1.1 to 0.74, the content of CaO·2Al2O3 (CA2) in products increased, whereas contents of CaO·Al2O3 (CA) and 12CaO·7Al2O3 (C12A7) decreased; when the C/A was 0.8, the phase composition of product (CS71) was equal to that of Secar71. Additionally, the crystallines of CA and CA2 in the product were reduced when the C/A molar ratio was decreased. And then, the bulk density, apparent porosity, permanent linear change, cold crushing strength (CCS), and cold modulus of rupture (CMOR) of the corundum‐based castables bonded with CS71, Secar7 were compared. The castables bonded with CS71 demonstrate obviously improved CCS, CMOR, and volume stability.  相似文献   

20.
A study of the formation of several calcium aluminates, CaO.Al2O3, 12CaO.7Al2O3 and 3CaO.Al2O3, from pure components in the lime-sinter process was undertaken. The qualitative aspects of the formation of these aluminates were determined by X-ray diffraction analysis, EMPA, SEM, DTA and high-temperature X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号