首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在摇瓶条件下,以大豆肽转化率为指标,通过单因素试验和正交试验设计,优化得到最佳发酵培养基为豆粕粉80 g/L、麦芽糖15 g/L、磷酸二氢钾6 g/L。在10 L发酵罐条件下,研究了搅拌速率和通气量对枯草芽孢杆菌ZC1发酵豆粕产大豆肽的影响,结果表明:当搅拌速率150 r/min、通气量5 L/min、发酵温度37℃时,发酵罐运转良好,在发酵48 h左右时,中性蛋白酶酶活力和大豆肽转化率均高于摇瓶培养,分别达到了852.5 U/mL和76.73%。  相似文献   

2.
在单因素试验的基础上,应用响应面法对解淀粉芽孢杆菌(Bacillus amyloliquefaciens)GZUB-7产中性蛋白酶的发酵条件进行优化,以达到提高菌株产中性蛋白酶酶活力的目的。结果表明,发酵培养基的最佳组分为葡萄糖用量50 g/L、豆粕粉40 g/L、CaCl2添加量0.44 g/L;最适发酵条件为发酵温度40 ℃、初始pH 7.0、接种量6.0%、发酵时间40 h,在此条件下,该菌株产中性蛋白酶酶活力达到192.7 U/mL。  相似文献   

3.
通过摇瓶培养对菌株SFGi-1产赤霉素的培养基和培养条件进行了优化,确定最佳发酵培养基为液化淀粉100g/L,花生饼粉15g/L,豆粕粉3g/L,硫酸镁0.75g/L,磷酸二氢钾1.0g/L:培养条件为培养温度30℃,接种量5%,250mL摇瓶装液量为35mL,起始DH值为5.5,发酵时间204h.在此条件下,菌株SFGi-1赤霉素发酵最高效价可达到1424mg/L.  相似文献   

4.
在摇瓶发酵条件下,采用单因素实验和响应面分析法对枯草芽孢杆菌ZC1的发酵培养基和条件进行优化,以提高其活菌数。通过单因素实验和响应面分析,确定了枯草芽孢杆菌ZC1的最佳发酵培养基:豆粕粉24g/L、葡萄糖6g/L、氯化钠8g/L;发酵条件:发酵温度37℃、初始pH 7.5、接种量4%、摇床转速200r/min。在此条件下,发酵24 h,枯草芽孢杆菌ZC1的活菌数由原来的1.13×10~(10) cfu/mL提高到3.69×10~(10) cfu/mL。  相似文献   

5.
本文用蔗糖、豆粕粉、玉米粉作为基础培养基,对产果糖基转移酶的米曲霉诱变融合菌株RⅢ-7进行发酵实验,通过Plackett-Burman优化实验,得到影响其发酵的3个显著因素,分别为蔗糖浓度、豆粕粉浓度、转速;再通过中心复合设计(CCD)响应面设计进一步优化米曲霉产果糖基转移酶的发酵工艺,实验结果表明,蔗糖、豆粕粉和转速之间存在着交互作用,其中豆粕粉浓度与转速之间的交互作用显著,得到最优工艺参数为:蔗糖浓度为5.95%、豆粕粉浓度为1.60%、转速为165 r/min。经验证,在最优发酵工艺条件下,米曲霉产果糖基转移酶酶活力达到870.21 U/g,与预测值895.68 U/g接近,误差为0.028%。  相似文献   

6.
本文用蔗糖、豆粕粉、玉米粉作为基础培养基,对产果糖基转移酶的米曲霉诱变融合菌株RⅢ-7进行发酵实验,通过Plackett-Burman优化实验,得到影响其发酵的3个显著因素,分别为蔗糖浓度、豆粕粉浓度、转速;再通过中心复合设计(CCD)响应面设计进一步优化米曲霉产果糖基转移酶的发酵工艺,实验结果表明,蔗糖、豆粕粉和转速之间存在着交互作用,其中豆粕粉浓度与转速之间的交互作用显著,得到最优工艺参数为:蔗糖浓度为5.95%、豆粕粉浓度为1.60%、转速为165 r/min。经验证,在最优发酵工艺条件下,米曲霉产果糖基转移酶酶活力达到870.21 U/g,与预测值895.68 U/g接近,误差为0.028%。   相似文献   

7.
利用脉冲磁场诱变枯草芽孢杆菌结合发酵条件优化以实现中性蛋白酶产量的最大化。结果表明在磁场强度为7 T,脉冲数为40次时诱变得到了中性蛋白酶产量提高17.7%的枯草芽孢杆菌菌株。对其发酵条件进行优化,得到最佳发酵培养基配方为豆粕粉90 g/L,麦芽糖10 g/L,KH_2PO_4 8 g/L,最佳发酵条件为接种量5%、发酵温度37℃、摇床转速180 r/min。在此条件下,发酵48 h,中性蛋白酶酶活力为384.57 U/m L,比野生株提高了26.48%。  相似文献   

8.
纳豆激酶具有良好的溶解血栓的功效,由于纳豆激酶目前的发酵水平不高,限制了其应用。该研究以纳豆激酶活力为响应值,在单因素试验基础上,采用Plackett-Burman试验、最陡爬坡试验和响应面法对纳豆激酶培养基配方进行了优化。结果表明,通过Plackett-Burman试验筛选出豆粕粉、无水氯化钙、甘油为影响纳豆激酶活力的主要因素。最后运用响应面分析确定纳豆激酶最优发酵培养基为:甘油43 g/L、豆粕粉24 g/L、无水氯化钙0.14 g/L、七水硫酸镁0.80 g/L、十二水磷酸氢二钠3.00 g/L、无水磷酸二氢钾1.00 g/L、L-甲硫氨酸0.20 g/L,此条件下纳豆激酶活力最高为(4 281±103)FU/mL,是优化前的1.97倍。  相似文献   

9.
在摇瓶发酵条件下,利用响应面法优化枯草芽孢杆菌BS3菌株产蛋白酶的培养基,在单因素实验的基础上,采用Plackett-Burman实验设计(PB)对影响枯草芽孢杆菌BS3产蛋白酶的培养基组分进行了筛选,确定主要影响因子为玉米浆、氯化铵和玉米淀粉.然后通过最陡爬坡实验、中心组合实验设计和响应面分析法,确定了主要的影响因子及其浓度.优化后的培养基组成为:玉米淀粉1.586g/100g,玉米浆3.170/100g,氯化铵1.998/100g,其他组分维持低添加量,在此培养基条件下,活菌数为12.640×109cfu/g,蛋白酶活为162.309U/g.  相似文献   

10.
为提高新疆冰川细菌Serratia sp.A29-2的低温蛋白酶产酶活性,在单因素试验的基础上,通过正交试验和响应面试验,对其发酵培养基和发酵条件进行了优化。研究表明:其最佳培养基组成为蛋白胨15.0 g/L、酵母粉5.0 g/L、麦芽糖10.0 g/L、CaCl20.5 g/L。最优发酵条件是:温度22℃,pH值7.0,时间60 h,NaCl质量分数1.0%。以优化培养基为基础,在最适发酵条件下,菌株Serratia sp.A29-2产低温蛋白酶酶活可达54.25 U/mL,是初始酶活的1.93倍。  相似文献   

11.
试验采用响应面分析法优化紫苏粕和豆粕共发酵生产风味紫苏酱的制曲培养基配方。结果表明最优制曲培养基配方为紫苏粕添加量37g、豆粕添加量63g、面粉添加量18.5g、100g干曲料加水量92mL。验证实验结果表明:中性蛋白酶活力达到2293.68U/g,与理论值2286.98U/g相差0.29%。因此,利用响应面法对紫苏粕和豆粕共发酵生产风味紫苏酱的制曲培养基配方进行优化合理可行,为工业化生产风味紫苏酱提供工艺参数。  相似文献   

12.
目的:通过对嗜麦芽窄食单胞菌(Kx-7)的发酵培养基进行优化来提高蛋白酶活力。方法:首先利用单因素实验确定影响Kx-7产蛋白酶的碳源、氮源及表面活性剂的种类和浓度范围;在此基础上,应用Box-Behnken实验设计对影响蛋白酶活力的显著因素进行优化,最终建立了以蛋白酶活力为响应值的二次回归方程模型,获得了最适的Kx-7产蛋白酶发酵培养基。结果:具有显著效应的三个因素分别为D-果糖,酪蛋白和Triton X-100,三者最佳浓度分别19.15g/L、4.05g/L和5.1mL/L。优化后嗜麦芽窄食单胞菌Kx-7产酶酶活提高到324.56U/mL,比初始酶活146.43U/mL提高了1.2倍。结论:响应面实验优化了Kx-7发酵培养基,大大提高蛋白酶的产量,有望用于大规模生产。   相似文献   

13.
为提高米曲霉(Aspergillus oryzae)液体发酵生产中性蛋白酶的能力,采用单因素试验、Plackett-Burman(PB)试验筛选碳源、氮源和无机盐,并通过响应面法优化其最佳配比,提高米曲霉液体发酵生产中性蛋白酶的活性。结果表明,米曲霉液体发酵生产中性蛋白酶的最佳碳源、氮源和无机盐分别为玉米粉、牛肉膏和氯化钙,发酵的最优条件为玉米粉添加量17 g/L,牛肉膏添加量10 g/L,氯化钙添加量0.04 g/L,接种量5%,装液量60 mL/250 mL,于30 ℃条件下发酵84 h。在此优化条件下,产生的中性蛋白酶活性从最初的21.4 U/mL提高至110.5 U/mL。  相似文献   

14.
为了提高纳豆中的蛋白酶活力,以纳豆芽孢杆菌为菌种,对鹰嘴豆纳豆液态发酵进行优化。以蛋白酶活力为指标,采用Plackett-Bnrmao法筛选出三个对蛋白酶活力影响最大的因素:装液量、转速和鹰嘴豆粉添加量。通过响应面优化鹰嘴豆纳豆液态发酵的培养基和发酵条件,建立二次回归模型的拟合度良好,对提高蛋白酶活力影响显著(p<0.005),所得最佳培养基为鹰嘴豆粉添加量5.9%,豆粕粉1.0%,葡萄糖0.6%,氯化钠0.5%,最佳发酵条件为:转速250 r/min,装液量76 mL/500 mL,温度37℃,发酵时间48 h。该条件下发酵所得蛋白酶活力达(3558.0±1.5) U/mL,相对于对照培养基的(2491.4±2.8) U/mL提高了42.8%,且纤维蛋白平板法验证的纳豆激酶溶解圈面积提高了108.6%。结果表明,优化后的鹰嘴豆纳豆液态发酵能有效提高蛋白酶活力。  相似文献   

15.
冉春霞  陈光静  阚建全 《食品工业科技》2012,33(18):227-231,244
采用响应面法优化全豆腐乳前期发酵条件,即在单因素实验的基础上,选取发酵时间、发酵温度、菌种接种量为影响因子,以腐乳毛坯上蛋白酶、脂肪酶、纤维素酶以及α-淀粉酶活力为响应值,应用Box-Behnken中心组合实验设计建立数学模型。研究结果表明,全豆腐乳前期发酵的最优工艺条件为:发酵时间54h、发酵温度30℃、菌种接种量10.3%(以全豆腐乳白坯重量计,孢子悬浮液的浓度约为0.5×107个/mL)。在此最优工艺条件下,全豆腐乳毛坯上蛋白酶活力为208.292U/g,脂肪酶活力为95.835U/g,纤维素酶活力为62.479U/g,α-淀粉酶活力为202.215U/g,各酶的酶活均达到相对较高水平。  相似文献   

16.
目的:优化蜡样芽孢杆菌发酵生产新型中性蛋白酶的培养条件。方法:采用Plackett-Burman试验设计,筛选影响蜡样芽孢杆菌高产新型中性蛋白酶酶活力的关键因子;通过Box-Behnken响应面试验设计获得新型中性蛋白酶发酵的最佳工艺条件。结果:筛选出影响蜡样芽孢杆菌高产新型中性蛋白酶的主要因子为葡萄糖、蛋白胨和pH值。获得的最优化发酵培养基组成和培养条件:葡萄糖35 g/L,蛋白40.38 g/L,氯化钠15 g/L,硫酸镁1.5 g/L,Tween-8010 g/L,装液量50 mL/250 mL,pH 7.15,菌龄12 h,发酵时间36 h。在上述条件下,蜡样芽孢杆菌发酵生产新型中性蛋白酶的酶活力高达696.51 U/mL,是未优化前的1.93倍。结论:研究结果为新型中性蛋白酶的产业化生产和应用提供了良好基础。  相似文献   

17.
以地衣芽孢杆菌(Baclicus lincheniformis)E-417为出发菌株,采用氯化锂(LiCl)-常压室温等离子体(ARTP)复合诱变法对其进行诱变,通过酪蛋白平板初筛、摇瓶复筛、遗传稳定性验证筛选高产碱性蛋白酶的优良菌株,并通过单因素及响应面试验对其发酵产酶条件进行优化。结果表明,在氯化锂添加量为1.5%、ARTP照射时间为45 s的最适复合诱变条件下筛选得到1株高产碱性蛋白酶的优良菌株F-3,酶活达到12 147 U/mL,且该菌株传代8次后仍具有良好的遗传稳定性,其最适发酵培养基成分为玉米粉41 g/L、豆饼粉40 g/L、碳酸钠2.1 g/L、磷酸氢二钠2.0 g/L;最适发酵条件为发酵温度37 ℃、初始pH值7.0、接种量8%。在此优化条件下,碱性蛋白酶酶活达到16 156 U/mL,较原始菌株提高75%。  相似文献   

18.
《食品与发酵工业》2016,(5):102-107
对1株枯草芽孢杆菌产中性蛋白酶发酵培养基以及发酵条件进行了优化,最终确定了摇瓶最佳发酵培养基为:甘油40 g/L、豆粕粉30 g/L、麸皮10 g/L、Na2HPO44 g/L、K2HPO40.3 g/L。摇床最佳发酵条件为:温度30℃、转速250 r/min、接种量体积分数6%,在此发酵条件下,酶活达到6 082.7 U/m L,发酵强度为56 U/(m L·h)。在15 L发酵罐进行了初步验证,通过流加甘油分批发酵,在第25h酶活达到最大值,为11 871 U/m L。  相似文献   

19.
利用响应面法优化海洋细菌YDX-1产纤维素酶的发酵条件   总被引:1,自引:0,他引:1  
采用响应面法对海洋细菌YDX-1产纤维素酶的发酵条件进行了优化。首先用Plackett-Burman法从8个因子中筛选出3个主要影响YDX-1产酶的因素,然后进行最陡爬坡实验逼近最佳响应面区域,最后通过Box-Behnken响应面设计实验得到最适条件为温度31℃、羧甲基纤维素钠(CMC-Na)41g/L、(NH4)2SO44.7g/L。在最适条件下测得的酶活为273.20U/mL,较优化前的150.13U/mL提高了81.97%。  相似文献   

20.
采用Plackett-Burman(PB)分析法和响应面法(Response surface methodology,RSM)对臭曲霉产α-葡萄糖苷酶的发酵条件进行了优化。PB实验表明麦芽浸粉、KH2PO4、尿素、pH和接种量具有显著影响效应;然后利用最陡爬坡实验逼近最大响应区域,通过中心组合实验对影响产酶的主要因素进行研究,建立了影响因素与响应值之间的回归方程,并获得最佳发酵条件:麦芽浸粉38.13g/L,KH2PO47.88g/L,尿素0.91g/L,pH为5.76,接种量为9.63%。在此优化条件下发酵,α-葡萄糖苷酶产量提高了35%左右,达到1218.6U/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号