首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(14):11376-11389
Al2O3-based composites using exfoliated graphite nanoplatelets (xGnPs) have been developed by powder metallurgy (PM) route using both conventional as well as spark plasma sintering (SPS) processes. Al2O3-0.2, 0.5, 0.8, 3 and 5 vol% xGnP composites have been developed, and the effect of the addition of xGnP on the density, hardness, fracture toughness and wear behaviour of the various Al2O3-xGnP composites have been analyzed. Conventional sintering was done at a temperature of 1650 °C for 2, 3 and 4 h in inert atmosphere, whereas SPS was carried out at 1450 °C under 50 MPa pressure for 5 min. A uniform dispersion of the xGnP in the Al2O3 matrix was observed in the composites upto the addition of 3 vol% xGnP. Results indicate that a significant improvement in hardness, wear resistance and fracture toughness of the composites could be achieved by using xGnP as nanofiller. The hardness and fracture toughness of the composites developed by both conventional sintering and SPS show an increase upto the addition of 3 and 0.8 vol% xGnP respectively. The wear resistance of the composites also shows significant improvement upto the addition of 3 vol% xGnP. The composites developed by SPS have been found to possess superior mechanical properties as compared to the composites developed by conventional sintering. The improvement in the mechanical properties can be attributed to the strong interaction between the xGnP and the Al2O3 matrix at the interfaces and to the toughening mechanisms such as crack bridging and crack deflection.  相似文献   

2.
Al2O3/Ti composites containing 0‐30 vol% dispersed fine Ti particles were fabricated using a hot‐press sintering method at 1500°C from mixtures of Al2O3 and TiH2 powders. During sintering, TiH2 decomposed to form metallic Ti. The effects of the Ti content on the mechanical and electrical properties of the composites were then investigated. No Ti‐Al intermetallic compounds were detected by X‐ray diffraction, and energy‐dispersive X‐ray spectroscopy indicated the presence of Al‐Ti‐O solid solution and Ti‐O phases. The composites showed enhanced densification; the measured densities were higher than the calculated theoretical values. Microstructural observation revealed homogeneously distributed fine Ti particles dispersed in the Al2O3 matrix. The Ti particle size ranged from submicrometer to a few micrometers depending on the Ti content. The fracture mode of the composites was primarily transgranular, in contrast to the intergranular fracture mode of monolithic Al2O3. Although the flexural strength was decreased with increase in Ti content, the composite containing 20 vol% Ti displayed the maximum fracture toughness of 4.3 MPa·cm1/2, which was 37% greater than that of monolithic Al2O3. The composites containing more than 15 vol% Ti exhibited drastic decreases in resistivity (~10?1 Ωcm), which were attributed to the formation of interconnected Ti networks at these Ti contents. The percolation threshold volume for electrical conduction in the present system was calculated to be 13.8 vol%. The results indicate that dispersing fine Ti particles into Al2O3 increased the fracture toughness and improved the conductivity of Al2O3.  相似文献   

3.
《Ceramics International》2017,43(13):10224-10230
Whiskers and nanoparticles are usually used as reinforcing additives of ceramic composite materials due to the synergistically toughening and strengthening mechanisms. In this paper, the effects of TiC nanoparticle content, particle size and preparation process on the mechanical properties of hot pressed Al2O3-SiCw ceramic tool materials were investigated. The results showed that the Vickers hardness and fracture toughness of the materials increased with the increasing of TiC content. The optimized flexural strength was obtained with TiC content of 4 vol% and particle size of 40 nm. The particle size has been found to have a great influence on flexural strength and small influence on hardness and fracture toughness. It was concluded that the flexural strength increased remarkably with the decreasing of the TiC particle size, which was resulted from the improved density and refined grain size of the composite material due to the dispersion of the smaller TiC particle size. SEM micrographs of fracture surface showed the whiskers to be mainly distributed along the direction perpendicular to the hot-pressing direction. The fracture toughness was improved by whisker crack bridging, crack deflection and whisker pullout; the TiC nanoparticles in Al2O3 grains caused transgranular fracture and crack deflection, which improved the flexural strength and fracture toughness with whiskers synergistically. Uniaxial hot-pressing of SiC whisker reinforced Al2O3 ceramic composites resulted in the anisotropy of whiskers’ distribution, which led to crack propagation differences between lateral crack and radical crack.  相似文献   

4.
This work aims to enhance the fracture toughness of brittle Al2O3 ceramics and apply insulated Al2O3 ceramics with electrical conductivity by dispersing second tungsten (W) metal particles. In order to investigate the effects of W dispersion on mechanical and electrical properties, Al2O3–W composites with various amounts of W (ranging from 5 vol% to 20 vol%) were fabricated by the hot-press sintering method at various sintering temperatures. Microstructure analysis revealed submicron Al2O3 matrix grains and W particles. The existence of three phases of Al2O3, W, and AlWO4 was confirmed by X-ray diffraction patterns. All Al2O3–W composites showed higher fracture toughness than monolithic Al2O3. The toughening mechanism was attributed to crack deflection and crack bridging. Transgranular fracture was visible in all composites. Electrical resistivity dramatically lowered from 2.9 × 1012 Ω cm of monolithic Al2O3 to 4.1 × 102 Ω cm of the composite with 20 vol% W addition. The percolation threshold is calculated as 18.5%. With the increase in sintering temperature, the amount of W particles was decreased and Al2O3 grains became large, leading to the reduced number of conductive pathways formed by the dispersed W particles. As a result, electrical conductivity was decreased.  相似文献   

5.
The low fracture toughness of Al2O3-based ceramics limited their practical application in cutting tools. In this work, graphene was chosen to reinforce Al2O3-WC-TiC composite ceramic tool materials by hot pressing. Microstructure, mechanical properties and toughening mechanisms of the composite ceramic tool materials were investigated. The results indicated that the more refined and denser composite microstructures were obtained with the introduction of graphene. The optimal flexural strength, Vickers hardness, indentation fracture toughness were 646.31?±?20.78?MPa, 24.64?±?0.42?GPa, 9.42?±?0.40?MPa?m1/2, respectively, at 0.5?vol% of graphene content, which were significantly improved compared to ceramic tool material without graphene. The main toughening mechanisms originated from weak interfaces induced by graphene, and rugged fractured surface, grain refinement, graphene pull-out, crack deflection, crack bridging, micro-crack and surface peeling were responsible for the increase of fracture toughness values.  相似文献   

6.
2Y‐TZP/Al2O3 hybrid nanoparticles prepared by CO2 laser covaporization (CoLAVA) were wet mixed with biocompatible lamellar Ta metal particles (20 vol%) and consolidated by spark plasma sintering. The microstructure and mechanical properties of this novel ceramic–metal composite have been studied. The achieved results demonstrate that both the homogeneity of the 2Y‐TZP/Al2O3 nanocomposite matrix and the reinforcement with a micrometer‐sized ductile phase are prerequisites for the successful design and fabrication of ceramic–metal composites with high strength (1300 MPa), enhanced fracture toughness (16 MPa·m1/2), and improved low‐temperature degradation resistance.  相似文献   

7.
《Ceramics International》2016,42(7):8597-8603
This paper discusses the influence of nickel–phosphorus coated graphene (Gn–Ni–P) and uncoated graphene (Gn) addition to an alumina matrix and its impact on the mechanical properties of obtained composites. The composites are prepared via powder processing and consolidated using the Spark Plasma Sintering (SPS) method. The effects of the addition of coated graphene and coating thickness on mechanical properties were evaluated. Physical properties such as relative density, hardness and fracture toughness were analyzed. Significant improvement of the fracture toughness (60%) for the composites with 2 vol% Gn–Ni–P compared to reference sample was observed. Moreover, 35% higher KIC was noticed for Gn–Ni–P reinforced composites than for Al2O3–Gn.  相似文献   

8.
This study addressed novel multiphase composite of Al2O3/Ti/TiC that exhibited enhanced fracture toughness and room-temperature crack-healing function. Al2O3/Ti/TiC composites were fabricated through hot-press sintering of CNT, TiH2, and Al2O3 mixed powders, where the TiC was in-situ formed by reaction of CNT and Ti. The effects of CNT (TiC) content on mechanical and electrical properties were studied. Electrochemical anodization process at room temperature was attempted to these composites to heal cracks introduced in the surface of composites. Results indicated that added CNT was invisible while metal Ti and reaction product TiC coexisted in all samples. The reaction between CNT and Ti[O] representing dissolved active oxygen into Ti was considered as the main formation route of TiC. The toughening mechanism was demonstrated as crack deflection and bridging due to the presence of TiC. In spite of the increase in electrical resistivity because of the higher resistivity of TiC than Ti, the present Al2O3/Ti/TiC composites still remain high enough electrical conductivity (8.0 × 10−3 Ωcm ~1.8 × 10−2 Ωcm for 0-2 vol% CNT addition) which could be regarded as conductors; it allowed to heal cracks in the composites by electrochemical anodization that formed titanium dioxide phase at room temperature. It was found that crack-healing ability in 1 vol% CNT added composite exhibited higher strength recovery ratio of 95.6% to the crack-free sample than that of Al2O3/Ti composite (the recovery ratio of 89.6%). After crack-healing process, mechanical strength of samples increased by 52.3% compared to cracked composites. It was concluded that the formed TiC could contribute to the appropriate electrical conduction as well as interface strengthening in the Al2O3/Ti composites. Furthermore, it was firstly speculated that the TiC could be electrochemically anodized to form an oxide like Ti metal. These characteristics enable Al2O3/Ti/TiC composites as the crack-healing materials at room temperature.  相似文献   

9.
《Ceramics International》2016,42(16):18700-18710
A series of Al2O3/Y2O3-stabilized zirconia (Y-TZP) ceramic composites with different zirconia contents (5 and 40 vol% Y-TZP) and fabricated by different green processing techniques (a novel tape casting and conventional slip casting) were studied. The microstructure and mechanical properties of the composites were investigated systematically, by means of scanning electron microscopy, Vickers indentation, depth-sensing nanoindentation, and single-edge laser-notched beam (SELNB) techniques. The indentation fracture method was found to be unsuitable for fracture toughness determination in this work. Reliable values of fracture toughness were obtained by the SELNB method with an almost atomically sharp laser-machined initial notch. The microstructure and mechanical properties of the ceramic composites mainly depended on the Y-TZP content. No significant differences were induced by the choice of green processing technique. The contribution of residual stresses to fracture toughness in Al2O3/Y-TZP ceramic composites was investigated. To this end, a theoretical model was applied to estimate the increase in fracture toughness due to the measured residual stresses in the samples. It was found that in this case, residual stresses were not the main factor responsible for the toughening in Al2O3/Y-TZP composites.  相似文献   

10.
Zirconia-toughened alumina composites containing 0–30 vol% of 3Y-TZP were fabricated by sintering at 1600 °C for 2 h in air. The effect of the 3Y-TZP content on the mechanical properties and microstructure of the alumina ceramics was investigated. The fracture toughness and biaxial flexural strength increased as the 3Y-TZP content increased. The Young's modulus decreased with 3Y-TZP content according to the rule of mixture, while the hardness showed the contrary tendency. The Weibull modulus of the Al2O3 with 20 vol% 3Y-TZP composite is higher than that of alumina. The residual hoop compressive stress developed in ZTA ceramic composites probably accounts for the enhancement of strength and fracture toughness, as well as for the higher tendency of crack deflection. No monoclinic phase and strength degradation were found after low temperature degradation (LTD) testing. The excellent LTD resistance can be explained by the increased constraining force on zirconia embedded in alumina matrix.  相似文献   

11.
Chemical vapor deposition (CVD) was used to achieve a homogeneous dispersion of carbon nanotubes (CNTs) on aluminum oxide (Al2O3) powder. This powder was plasma sprayed onto a steel substrate to produce a 96% dense Al2O3 coating with CNT reinforcement. Addition of 1.5 wt.% CNTs showed a 24% increase in the relative fracture toughness of the composite coating. The improvement in the fracture toughness is attributed to uniform dispersion of CNTs and toughening mechanism such as CNT bridging, crack deflection and strong interaction between CNT/Al2O3 interfaces. Wear and friction behavior of the CNT reinforced Al2O3 coating under dry sliding condition was investigated by ball-on-disk tribometer. With the increasing normal loads from 10 to 50 N, the wear volume loss and coefficient of friction of the coating increased, owing to transition from the mild to severe wear. Wear resistance of the Al2O3-CNT composite coating improved by ∼27% at 50 N. Coefficient of friction at 50 N was dependent on the competing phenomena of wear debris generation and graphitization due to pressure.  相似文献   

12.
《Ceramics International》2021,47(21):30256-30265
α/β-SiAlON composite ceramics using powders mixed through different processes were prepared via spark plasma sintering. Effects of different powder mixing methods (ball-milling and ultrasonic vibration with mechanical stirring), ball-milling media (Al2O3 and Si3N4 balls), and mixing times (12 and 24 h) on the components and morphology of mixed powders, phase composition, microstructure, and mechanical properties of α/β-SiAlON ceramics were studied. Results indicate that additional oxides are mixed to powders when ball-milled with Al2O3 balls, leading to an increase in the amount of amorphous glass and a decline in α/β ratio and mechanical properties. These effects were reduced when powders were ball-milled with Si3N4 balls, and α-SiAlON content and fracture toughness increased significantly. Moreover, α/β-SiAlON ceramics that underwent ultrasonic vibration with mechanical stirring exhibited the highest hardness and oxidation resistance at high temperature, and their α/β ratio was close to expected value.  相似文献   

13.
A type of Al2O3-based composite ceramic tool material simultaneously reinforced with micro-scale and nano-scale TiC particles was fabricated by the hot-pressing technology with different contents of cobalt additive. The effects of cobalt on the ambient temperature mechanical properties and high temperature flexural strength were investigated. The flexural strength and fracture toughness of the composite with 3 vol% cobalt as a function of temperature were investigated. Cobalt greatly enhanced the ambient temperature flexural strength and fracture toughness, while further increasing the content of cobalt led to a dramatic strength degradation, especially at high temperature. The flexural strength of the composite containing 3 vol% cobalt decreased as the temperature increased from 20 to 1200 °C, and the fracture toughness decreased as a function of the temperature up to 1000 °C but increased at 1200 °C. The degradation of high temperature flexural strength was ascribed to the change of the fracture mode, the grain and grain boundary oxidation, the decrease of elastic modulus and the grain boundary sliding.  相似文献   

14.
Alumina (Al2O3) and alumina-yttria stabilized zirconia (YSZ) composites containing 3 and 5 mass% ceria (CeO2) were prepared by spark plasma sintering (SPS) at temperatures of 1350-1400 °C for 300 s under a pressure of 40 MPa. Densification, microstructure and mechanical properties of the Al2O3 based composites were investigated. Fully dense composites with a relative density of approximately 99% were obtained. The grain growth of alumina was inhibited significantly by the addition of 10 vol% zirconia, and formation of elongated CeAl11O18 grains was observed in the ceria containing composites sintered at 1400 °C. Al2O3-YSZ composites without CeO2 had higher hardness than monolithic Al2O3 sintered body and the hardness of Al2O3-YSZ composites decreased from 20.3 GPa to 18.5 GPa when the content of ZrO2 increased from 10 to 30 vol%. The fracture toughness of Al2O3 increased from 2.8 MPa m1/2 to 5.6 MPa m1/2 with the addition of 10 vol% YSZ, and further addition resulted in higher fracture toughness values. The highest value of fracture toughness, 6.2 MPa m1/2, was achieved with the addition of 30 vol% YSZ.  相似文献   

15.
The grain growth kinetics and mechanical properties of graphene platelets(GPLs) reinforced ZrO2/Al2O3(ZTA) composites prepared by microwave sintering were investigated. The calculated grain growth kinetics exponent n indicated that the GPLs could accelerate the process of the Al2O3 columnar crystal growth. And the grain growth activation energy of the Al2O3 columnar crystal indicated that the grain growth activation energy of the GPLs doped ZTA composites is much higher than those of pure Al2O3 and ZTA in microwave sintering. The optimal mechanical properties were achieved with 0.4?vol% GPLs, whose relative density, Vickers hardness and fracture toughness were 98.76%, 18.10?GPa and 8.86?MPa?m1/2, respectively. The toughening mechanisms were crack deflection, bridging, branching and pull-out of GPLs. The results suggested that GPLs-doped are good for the Al2O3 columnar crystal growth in the ZTA ceramic and have a potentially improvement for the fracture toughness of the ceramics.  相似文献   

16.
Directionally solidified Al2O3-based eutectic ceramic in situ composites with inherently high melting point, low density, excellent microstructure stability, outstanding resistance to creep, corrosion and oxidation at elevated temperature, have attracted significant interest as promising candidate for high-temperature application. This paper reviews the recent research progress on Al2O3-based eutectic ceramic in situ composites in State Key Laboratory of Solidification Processing. Al2O3/YAG binary eutectic and Al2O3/YAG/ZrO2 ternary eutectic ceramics are prepared by laser zone melting, electron beam floating zone melting and laser direct forming, respectively. The processing control, solidification characteristic, microstructure evolution, eutectic growth mechanism, phase interface structure, mechanical property and toughening mechanism are investigated. The high thermal gradient and cooling rate during solidification lead to the refined microstructure with minimum eutectic spacing of 100 nm. Besides the typical faceted/faceted eutectic growth manner, the faceted to non-faceted growth transition is found. The room-temperature hardness HV and fracture toughness KIC are measured with micro-indentation method. For Al2O3/YAG/ZrO2, KIC = 8.0 ± 2.0 MPa m1/2 while for Al2O3/YAG, KIC = 3.6 ± 0.4 MPa m1/2. It is expectable that directionally solidified Al2O3-based eutectic ceramics are approaching practical application with the advancement of processing theory, technique and apparatus.  相似文献   

17.
Silicon carbide particulate reinforced alumina matrix composites were fabricated using DIrected Metal OXidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with appropriate dopants along with a preform of silicon carbide has led to the formation of alumina matrix surrounding silicon carbide particulates. SiCp/Al2O3 ceramic matrix composites fabricated by the DIMOX process, possess enhanced mechanical properties such as flexural strength, fracture toughness and wear resistance, all at an affordable cost of fabrication. SiCp/Al2O3 matrix composites were investigated for mechanical properties such as flexural strength, fracture toughness and hardness; the composite specimens were evaluated using standard procedures recommended by the ASTM. The SiCp/Al2O3 ceramic matrix composites with SiC volume fractions from 0.35 to 0.43 were found to possess average bend strength in range 158-230 MPa and fracture toughness was found to be in range of 5.61-4.01 MPa√m. The specimen fractured under three-point loading as observed under scanning electron microscope was found to fail in brittle manner being the dominant mode. Further the composites were found to possess lower levels of porosity, among those prepared by DIMOX process.  相似文献   

18.
Al2O3-YAG (Al5Y3O12) amorphous ceramic coatings exhibit excellent crack propagation resistance under harsh wear services due to the amorphous phase contributing to the plastic deformation performance of the coating. However, the formation mechanism of the amorphous phase is ambiguous. This study mainly investigated the formation mechanism of Al2O3-YAG amorphous coating prepared by atmospheric plasma spraying from the perspective of crystallization chemistry. Nano and microsized powders with low eutectic point ratio were selected as feedstock for comparison. X-ray diffraction, scanning electron microscope, and electron backscattered diffraction were used to analyze the phase composition, morphologies, phase distribution, and structure of the coating. It is concluded that the significant thermodynamically stable structure of polycompound with high coordination numbers of cations prioritized crystallizing in the Al2O3-YAG melt, but it needed more time to crystallize and hardly crystallized in the limited time during plasma spraying. Therefore, the selection of as-sprayable powder should also be considered the critical factor for preparing amorphous coatings. The nanoscale or submicro scale powder distributed uniformly with low eutectic point ratio was chosen as the feedstock to ensure the powder droplets diffuse sufficiently during deposition.  相似文献   

19.
《Ceramics International》2020,46(13):21156-21165
To improve the thermal and mechanical properties of Al2O3/AlN composite ceramics, a novel heterogeneous precipitation coating (HPC) approach was introduced into the fabrication of Al2O3/AlN ceramics. For this approach, Al2O3 and AlN powders were coated with a layer of amorphous Y2O3, with the coated Al2O3 and AlN powders found to favor the formation of an interconnected YAG second phase along the grain boundaries. The interconnected YAG phase was designed to act as a diffusion barrier layer to minimize the detrimental interdiffusion between Al2O3 and AlN particles. Compared with samples prepared by a conventional ball-milling method, the HPC Al2O3/AlN composites exhibited less AlON formation, a higher relative density, a smaller grain size and a more homogeneous microstructure. The thermal conductivity, bending strength, fracture toughness and Weibull modulus of the HPC Al2O3/AlN composite ceramics were found to reach 34.21 ± 0.34 W m−1 K−1, 475.61 ± 21.56 MPa, 5.53 ± 0.29 MPa m1/2 and 25.61, respectively, which are much higher than those for the Al2O3 and Al2O3/AlN samples prepared by the conventional ball-milling method. These results suggest that HPC is a more effective technique for preparing Al2O3/AlN composites with enhanced thermal and mechanical properties, and is probably applicable to other composite material systems as well.  相似文献   

20.
Zirconia-toughened alumina (ZTA) ceramics were prepared using three different kinds of Al2O3 powders (marked PW-A average particle size: 7.53 μm, marked PW-B average particle size: 1.76 μm, marked PW-C average particle size: 0.61 μm) by gelcasting. Effect of Al2O3 particle size on zeta potential, dispersant dosage and solid volume fractions of ZTA suspensions as well as the mechanical properties of ZTA green bodies and ceramics were investigated. The optimum dosages of dispersant for ZTA suspensions prepared by PW-A, PW-B and PW-C are 0.4 wt%, 0.5 wt% and 0.7 wt%, respectively. The highest solid volume fractions of ZTA suspensions can reach 62 vol% (SP-A), 60 vol% (SP-B) and 52 vol% (SP-C), respectively. The green bodies show a bending strength as high as 20 MPa, which can meet the requirement of machining. The Al2O3 powder with fine particle size is beneficial to the improvement of mechanical properties. The ZTA ceramics prepared by PW-B Al2O3 powder show the highest bending strength (680 MPa) and toughness (7.49 MPa m1/2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号