首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Dense environmental barrier coatings (EBCs) are an essential prerequisite to exploit the advantages offered by SiC-based fiber reinforced ceramic matrix composites (CMCs) to increase efficiency in gas turbines. Today's state-of-the art materials for application as EBCs are rare-earth (RE) silicates which, however, form amorphous phases upon rapid quenching from the melt. This makes their processing by thermal spray a challenge. Recently, high velocity oxygen fuel (HVOF) spraying was proposed as potential solution since the melting degree of the feedstock can be controlled effectively. This work studies the deposition of ytterbium disilicate (YbDS) at short stand-off distances and variant total feed rates and oxy-fuel ratios of the working gas. It was found that the overall degree of crystallinity could be kept at high level above 90%. The kinetic energy transferred by impinging particles was found to be an effective parameter to control the densification of the coatings. Porosities well below 10% were achieved while fully dense coatings were impeded due to the progressive accumulation of stresses in the coatings.  相似文献   

2.
The electrochemical behaviour of coated Cr3C2–NiCr steel in aerated 0.5 M H2SO4 solution was studied by means of electrochemical a.c. and d.c. measurements. A complete structural characterization of the coated steel before and after electrochemical tests was also carried out to access the corrosion mechanism of coated steel, electrolyte penetration through the coating, and to confirm the results obtained using electrochemical techniques. Two types of Cr3C2–NiCr coatings produced by a high velocity oxy-fuel spraying system (HVOF) were studied. Differences between coated steels are related to the spraying parameters reflecting their behaviour against corrosion phenomena. The electrochemical behaviour of the coated steel was strongly influenced by porosity and the presence of microcracks in the coating. Once the electrolyte reaches the steel substrate, it corrodes in a galvanic manner resulting in coating detachment from the steel.  相似文献   

3.
C.L. Zeng  J. Li 《Electrochimica acta》2005,50(28):5533-5538
The hot corrosion behavior of the Ni-based superalloy M38G covered with a film of molten 0.9Na2SO4–0.1K2SO4 (mole fraction) has been studied by electrochemical impedance spectroscopy at 900 °C in air. For comparison, the corrosion of the alloy immersed in molten (Na,K)2SO4 was also examined. The electrochemical impedance spectra in deep molten salt during an initial stage consisted of a semicircle at high frequency and a line at low frequency indicating a diffusion-controlled reaction. With extended immersion the impedance spectra were composed of two capacitive loops, i.e., a small semicircle at high-frequency port, and a large one at low-frequency port. The change of the impedance spectra is related to the formation of a protective scale. Contrary to the corrosion in deep molten salt, the corrosion of the alloy in the presence of a film of fused salt presented the characteristics of two capacitive loops for all the duration of the experimental test. Equivalent circuits representing the corrosion of the alloy in both corrosion conditions are proposed to fit the impedance spectra and electrochemical parameters in the equivalent circuits are also calculated.  相似文献   

4.
This paper compares the hot corrosion performance of yttria stabilized zirconia (YSZ), Gd2Zr2O7, and YSZ + Gd2Zr2O7 composite coatings in the presence of molten mixture of Na2SO4 + V2O5 at 1050 °C. These YSZ and rare earth zirconate coatings were prepared by atmospheric plasma spray (APS). Chemical interaction is found to be the major corrosive mechanism for the deterioration of these coatings. Characterizations using X-ray diffraction (XRD) and scanning electron microscope (SEM) indicate that in the case of YSZ, the reaction between NaVO3 and Y2O3 produces YVO4 and leads to the transformation of tetragonal ZrO2 to monoclinic ZrO2. For the Gd2Zr2O7 + YSZ composite coating, by the formation of GdVO4, the amount of YVO4 formed on the YSZ + Gd2Zr2O7 composite coating is significantly reduced. Molten salt also reacts with Gd2Zr2O7 to form GdVO4. Under a temperature of 1050 °C, Gd2Zr2O7 based coatings are more stable, both thermally and chemically, than YSZ, and exhibit a better hot corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号