首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2019,45(11):13859-13864
BaFe12-xCoxO19 (BFCO, x ≤ 0.4) ceramics with superior magnetic and electromagnetic (EM) properties were prepared using Co3+ substituted BaFe12O19 (BFO) in 2.6–18 GHz. Compared with the ceramics without Co3+, the incorporation of 40 mol% Co3+ enhances magnetic properties; the saturation magnetization (MS) is improved by about 55.6 emu·g−1 due to the variety of magnetocrystalline anisotropy. The resonance behaviors of complex permeability are observed and resonance frequency shifts to lower frequency range from 6 to 3 GHz. The minimum reflection loss (RL) of −32.1 dB (<−10 dB) is obtained at 11.2 GHz in 8.5–13.5 GHz at 2.0 mm thickness in the sample with x = 0.4, which suggests that such ceramics is highly promising as effective microwave absorbers for EM applications.  相似文献   

2.
Although CaMnO3 has been widely studied and used for its thermoelectric properties and giant magnetoresistance effect, little information exists about its application for microwave absorption. In this study, we synthesized CaMnO3, CaNi0.05Mn0.95O3 CaTi0.05Mn0.95O3 and CaZr0.05Mn0.95O3 with an orthorhombic system using a simple high-temperature solid-phase method. The minimum reflection loss value and effective absorption bandwidth could be efficiently improved due to the enhanced match complex permittivity produced after the Ni, Ti or Zr ions were substituted for Mn ions in CaMnO3. The minimum reflection loss value increases to ?39.7 dB from ?14.1 dB and the effective absorption bandwidth increases to 4.9 GHz from 2.7 GHz. The magnetic loss results only in a negligible influence on the microwave absorption. The enhancement of microwave absorption properties was primarily due to the stronger polarization effect. When Ni2+, Ti4+, or Zr4+ is introduced in the CaMnO3 lattice, the charge balance is broken, and the crystal lattice distortion increases because of the substitutive ions, interstitial ions, oxygen vacancy and exchange effect of Mn3+~Mn4+. The results indicate that CaMnO3 with reasonable doping at the Mn-site could achieve excellent microwave properties of wide bandwidth, high-efficiency absorption, and adjustable response frequency.  相似文献   

3.
    
《Ceramics International》2017,43(12):8603-8610
Porous CxNy nanofibers are controllably synthesized by a simple two-step method. The prepared samples possess uniform micropores and a chemical composition of C0.73 N0.27 with a surface area of 329 m2 g−1. The obtained CxNy nanofibers exhibit remarkable electromagnetic (EM) wave absorption properties when compared with conventional one-dimensional carbon materials. The minimum reflection loss (RL) reaches −36 dB at 2.7 GHz when the ratio of the CxNy absorbent added in paraffin matrix is only 1:3. The bandwidth of the RL below −10 dB covers 7.7 GHz (8.1–15.8 GHz) at the sample thickness of 2.5 mm. A possible EM wave loss mechanism was proposed in detail. The multiple reflection and dielectric loss could govern the excellent EM absorption leading the product to a probable application in stealth materials.  相似文献   

4.
BaFe12O19, a traditional ferrite, has always been extensively investigated as a microwave absorption material because of the application value. Herein, the core-shell BaFe12O19@MnO2 composite was designed and constructed successfully by a facile hydrothermal method. By introducing nanostructured MnO2, a typical dielectric loss medium, the electromagnetic wave absorption performance is effectively enhanced. The core-shell structure contributes to high interface polarization, thereby promoting the attenuation of electromagnetic waves. In addition, the optimal temperature of the hydrothermal reaction was explored through the characterization of the morphology and the analysis of microwave absorption performance. The result exhibits that the maximum reflection loss of the prepared BaFe12O19@MnO2-170 reaches -54.39 dB and the effective absorbing bandwidth reaches 4.64 GHz. The simple preparation method and attractive performance make BaFe12O19@MnO2 a promising candidate as microwave absorbers.  相似文献   

5.
TiO2 is not among the traditional electromagnetic (EM) absorbing material candidates owing to its poor response in the EM wave region. Although the EM wave absorption performance can be improved by hybrid and/or hydrogenated TiO2, the difficulty and risk of the experimental process are increased. Herein, rutile TiO2 nanorod was successfully prepared by two-step method. The analysis of dielectric properties exhibits that rutile TiO2 nanorod has excellent charge storage capacity. The results of EM wave absorbing performance show that impedance matching caused by anomalous resonance leads to frequency selective absorption. Such anomalous resonance is due to the resonant polarization of ionic clusters formed by oxygen ions and titanium ions. Moreover, metastructure design shows that the EM absorption frequency and the EM wave absorption bandwidth can be tuned through the design of metamaterial. Our founding will broaden the field of vision for the design of EM wave absorbing materials in the future.  相似文献   

6.
《Ceramics International》2016,42(11):13199-13206
A superhydrophobic wood surface with microwave absorption property was prepared based on the formation of CoFe2O4 nanoparticles and subsequent hydrophobization using fluorinated alkylsilane (FAS). Meanwhile, sticky epoxy resin was worked as a caking agent by adhering abundant of CoFe2O4 nanoparticles to wood surface. The as-prepared superhydrophobic coatings on wood maintain stable superhydrophobicity after suffering a significant abrasion. Moreover, the complex permeability and permittivity of the coated wood composites were measured in the frequency range of 2–18 GHz by vector network analysis. The microwave absorption properties were elucidated by the traditional coaxial line method. The results show that the as-prepared wood composites have excellent microwave absorption properties at the frequency of 16 GHz, and the minimum reflection loss can reach −12.3 dB. The approach presented may provide further routes for designing outdoor wood wave absorbers with a specified absorption frequency.  相似文献   

7.
    
《Ceramics International》2022,48(21):31129-31137
In this study, a lightweight and robust Ti3C2Tx/carbon nanotubes (CNTs) foam (TCF) was fabricated using HCl-induced self-assembly, followed by vacuum freeze-drying. The electrical conductivity and mechanical elasticity of the TCF was higher than those of monolithic Ti3C2Tx foams. This was ascribed to the incorporation of CNTs into Ti3C2Tx preventing the stacking of the Ti3C2Tx nanosheets and producing a well-developed three-dimensional honeycomb-like porous network structure, which considerably improved impedance matching, promoted multiple reflection loss, increased conduction loss and polarisation loss, thus imparting remarkable microwave absorption properties to the TCF. The 1.72 and 1.92 mm thick TCF samples with absorber loadings of 4 wt%, which were obtained by immersing TCF into molten paraffin, followed by cutting it into coaxial rings, presented an optimum reflection loss of ?48.8 dB and a maximum effective absorption bandwidth (EAB) of 5.44 GHz, respectively. Moreover, upon increasing the thickness of the TCF samples from 1.52 to 4.92 mm, the EAB could be regulated from 4.16 to 18 GHz, respectively. In this study, we developed a facile method for fabricating a lightweight and robust TCF, which met the ‘light, thin, broad, and strong’ criteria and presented a broad EAB and remarkable dissipation capability, for microwave absorption materials.  相似文献   

8.
    
《Ceramics International》2020,46(9):13397-13406
Microwave absorbing materials with enhanced microwave absorption performance and self-cleaning function are of great interest for military applications and human health caused by electromagnetic radiation pollution. Herein we report the synthesis of FeNi/NiFe2O4/NiO/C nanofibers (NFs) via electrospinning technique using nickel acetylacetonate (Ni(acac)2), ferric acetylacetonate (Fe(acac)3), and N, N-dimethylformamide (DMF)/polyacrylonitrile (PAN) solution as precursor. We also show the abilities of the materials to attenuate electromagnetic microwave and their ease of self-cleaning performance. X-ray diffraction patterns and HRTEM images reveal that the materials possess FeNi, NiFe2O4, NiO and graphite. HAADF-STEM images show that the magnetic nanoparticles distribute uniformly along the fibers. Contrast experiments had been conducted on different calcination temperatures to elucidate the impedance matching and loss mechanism. Based on the results of the experiment, excellent microwave absorption was exhibited by blending the NiFe2O4/NiO/CNFs and FeNi/NiFe2O4/NiO/CNFs into paraffin at 50 wt% and 5 wt%, respectively. Moreover, the contact angles (CA) of the as-prepared fiber films calcined at 650, 750 and 950 °C were 143°, 141° and 144°, respectively, indicating that fiber films exhibited excellent hydrophobicity and self-cleaning function. It suggested that the as-obtained NFs had an excellent application prospect in self-cleaning microwave absorbing materials.  相似文献   

9.
    
《Ceramics International》2021,47(21):30448-30458
Morphological configuration plays a vital role in regulating the absorption performance of magnetic materials. Herein, a novel challenge is discussed on electromagnetic loss features of two hard and soft magnetic materials with hierarchical brain-coral like structure and rod-like structure. In this study, pure SrFe12O19 (Sr) as hard magnetic component and CoFe2O4 (Co) as soft magnetic component with two distinct morphologies were successfully synthesized by facile hydrothermal and solvothermal methods. In the first approach, electromagnetic loss features of rod and brain-coral-like particles were investigated, and in second approach -according to the obtained results-microwave absorption performance of a mixture of hard/soft magnetic components with hierarchical structure were evaluated. The minimal reflection loss (RL) for brain-coral-like particles of individual Sr and Co samples were −17.6 dB (at 18.8 GHz with 9 mm thickness) and −31.2 dB (at 8.1 GHz with 10 mm thickness), respectively, which show far better performance than rod-like structure. Remarkably, the composite of Sr and Co micro-particles with hierarchical structure exhibited strong RL value of −38 dB with 2.6 GHz effective absorption bandwidth at the thickness of 2.5 mm, with a filling ratio of 40 wt%. According to the results, it is founded that the electromagnetic loss features are crucially boosted via hierarchical configuration of magnetic materials. Increment in complex permittivity and permeability, accounting for the formation of cross-linked networks in the hierarchical structure, promoted the interfacial polarization phenomena with different relaxation times and appearance of multi resonance peaks.  相似文献   

10.
    
《Ceramics International》2020,46(3):3166-3176
A large number of studies had shown that the morphology of the sample had a significant effect on the microwave absorption properties and catalytic activity of the sample. Manganese dioxide with different morphologies was synthesized by hydrothermal method through different precursors. The effects of sample morphology and microwave absorption properties on the catalytic activity of the sample in conventional thermal and microwave fields were studied. The results indicated that compared with the conventional thermal field, the catalytic activity of the samples in microwave field were obviously improved, and the activation energy of the reaction were decreased. Compared with the conventional thermal field, the conversion of toluene in microwave thermal field of MnO2(Ac), MnO2(S) and MnO2(N) increased by 59%, 42% and 12%, and the mineralization rate increased by 36%,11% and 2%, respectively, when the catalytic temperature was 150 °C. Compared with the traditional thermal field, the activation energy of the sample MnO2(Ac) in the microwave field was reduced by 88.3 KJ. A series of characterization results showed that the sample MnO2(Ac) had good catalytic activity in the microwave field was due to: MnO2(Ac) had proper microwave absorption properties, large amount of surface functional groups, large specific surface area and rich pore structure. The analysis results of electromagnetic parameters showed that: the reason that the sample MnO2(Ac) had good microwave absorption performance was that the MnO2(Ac) had proper impedance matching, high attenuation constant and Debye dipole relaxation effect.  相似文献   

11.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   

12.
    
《Ceramics International》2021,47(24):34159-34169
Given the remarkable performances of rare earth multiferroic ortho-ferrites with magnetic optical and dielectric properties, the Y1-xSrxFeO3 (x = 0, 0.05, 0.1, 0.15) perovskite structure microwave absorbing ferrite materials was successfully synthesized by Sr2+ ions A-site doping based on sol-gel technology in this paper. The XRD of all samples was refined with FullProf software, which confirmed the formation of the orthogonal perovskite structure (SG: Pnma). The SEM and TEM results display the average particles size of the samples is distributed between 110 and 160 nm. The increase of Sr doping concentration leads to the increase of particles size, which may be related to the growth of preferred orientation and incomplete substitution. The XPS analysis shows that Fe3+ was accompanied by the presence of Fe2+ with the doping of Sr2+ ions and oxygen vacancies increased significantly. The samples change from weak ferromagnetic state to paramagnetic state with the increase of Sr content. The minimum reflection loss (RL) of the Y0.95Sr0.05FeO3 samples at 12.2 GHz reached −30.87 dB with thickness of 2.2 mm, where its effective absorption bandwidth (EAB, RL ≤ −10 dB) reached 2.4 GHz (11.3–13.7 GHz). Moreover, the EAB of the Y0.85Sr0.15FeO3 samples reached 2.64 GHz, and the corresponding range is 9.0–11.6 GHz (X-band).  相似文献   

13.
The work attempted to develop a new kind of high temperature microwave absorption material. Dense Na3Zr1.9M0.1Si2PO11.9 (M?=?Ca2+, Ni2+, Mg2+, Co2+, Zn2+) and Na3Zr2-xZnxSi2PO12-x (x?=?0.1, 0.2, 0.3, 0.4) ceramics were prepared by solid-state reactions for phase, microstructure characterization and dielectric properties, microwave absorption properties analysis. Results show that the complex permittivity increases in all the divalent-doped Na3Zr2Si2PO12 ceramics. Na3Zr1.8Zn0.2Si2PO11.8 ceramic exhibits the highest complex permittivity and optimum microwave absorption performance. The lowest reflection loss is -28.1?dB at 9.88?GHz and the bandwidth is 4.14?GHz (8.26–12.4?GHz) with a thickness of 2.1?mm. It indicates that Na3Zr2Si2PO12 ceramic can be chosen as a potential candidate of microwave absorption material and the performance can be enhanced by divalent doping strategy.  相似文献   

14.
Here in, the effects of FeSiAl particle size on the dielectric and microwave absorption properties of FeSiAl/Al2O3 composites were studied. FeSiAl/Al2O3 composites containing 18–25 μm, 25–48 μm, and 48–75 μm FeSiAl particles were prepared by hot-pressed sintering based on uniformly mixed FeSiAl and Al2O3 powders. Results show that the real permittivity and the imaginary permittivity are significantly promoted with increasing FeSiAl particle size, which is ascribed to the enhanced interfacial polarization and conductance loss. In addition, the favorable matching impedance and suitable attenuation coefficient enabled the composite containing 25–48 μm FeSiAl powder to show a minimum reflection loss of ?34.4 dB at 11.7 GHz and an effective absorption bandwidth (<-10 dB) of 1.4 GHz in 11.0–12.4 GHz, when the thickness is 1.1 mm. By adjusting the thickness to 1.4 mm, the effective absorption bandwidth of the composite reaches a maximum value of 2.0 GHz in the 8.3–10.3 GHz range, indicating tunable, strong, and highly efficient microwave absorption performance.  相似文献   

15.
    
《Ceramics International》2022,48(18):26116-26128
In order to expand the application prospects of SiCN ceramics in the field of microwave (MW) absorption materials, a series of Ni3Si embedded SiCN ceramic fibers composites (NSF) were prepared by controlling Ni conversion rate through the electrospinning technique and polymer derivation, with the intention of improving the impedance matching degree, enhancing the conductivity and polarization, and further promoting the dielectric loss ability and MW absorption performance of ceramic materials. The microstructure, phase composition, conductivity, MW absorption properties and mechanism of the material were analyzed by a variety of characterization methods. The results show that NSF exhibited high dielectric loss efficiency and desirable effective absorption bandwidth (EAB) when the conversion rate of Ni was 0.5 wt%: The MW of the entire Ku band (12–18 GHz, 6 GHz) could be effectively absorbed by the sample with a thickness of 2.64 mm, and its EAB could cover 6–18 GHz by adjusting its thickness from 1 mm to 5 mm, so its performance is significantly superior to a number of similar SiCN based composite ceramic materials previously reported. To sum up, the NSF prepared in this work exhibits suitable impedance matching degree, good conductivity, obvious polarization effect, excellent dielectric loss ability, and gratifying EAB in MW, and it is expected to become a powerful candidate in the field of broadband MW absorption materials in the future.  相似文献   

16.
The three-dimensional porous Fe3O4/graphene composite foam as a new kind of absorbing composite with electrical loss and magnetic loss was successfully synthesized by a facile method. Fe3O4 was evenly attached on structure of graphene sheets which overlapped with each other to form three-dimensional porous graphene foam. The results revealed that when the mass ratio of graphene oxide (GO) and Fe3O4 was 1:1, the Fe3O4/graphene composite foam possessed the best absorption properties: the minimum reflection loss was up to ??45.08?dB when the thickness was 2.5?mm and the bandwidth below ??10?dB was 6.7?GHz when the content of the composite foam absorbents was just 8%. The micron-sized three-dimensional porous structure provided more propagation paths, enhancing the energy conversion of incident electromagnetic waves. The addition of Fe3O4 contributed to improving the impedance matching performance and magnetic loss. The three-dimensional porous Fe3O4/graphene composite foam was a kind of high-efficiency wave absorber, providing a new idea for the development of microwave absorbing materials.  相似文献   

17.
《Ceramics International》2020,46(9):13102-13106
The Ba1-xCaxFe11.4Co0.6O19 (x = 0.0, 0.2, 0.4, 0.6, and 0.8) composites with wide-bandwidth and good absorption performance were prepared. The MS of ceramics increases from about 62.4 to 83.4 emu g−1 as x rises from 0 to 0.6, which demonstrates that the desirable magnetic properties of such ceramics is obtained by adjusting the content of Ca2+. A bandwidth of reflection loss (RL) below - 5 dB can be obtained for frequencies from 5.9 to 18 GHz with the Ba0.4Ca0.6Fe11.4Co0.6O19 ceramic and a thickness of 2.0 mm, and a larger RL value of −34.1 dB is observed at 8.2 GHz for the Ba0.6Ca0.4Fe11.4Co0.6O19 ceramic. These results suggest the developed ceramics could act as effective and wide-bandwidth microwave absorbing materials to meet commercial and military applications.  相似文献   

18.
Enhanced microwave absorption properties were successfully achievable from SrFe2-xZnxFe16O27 (SrFe2-xZnxW; x = 0.0, 0.5, 1.0, and 2.0) hexaferrite filler-epoxy resin matrix composites. The composite samples were fabricated with the filler volume fractions (Vf) of 30, 50, 70, and 90%. Compared with fully Zn-substituted SrZn2W composite (x = 2.0), unsubstituted and partially Zn-substituted SrFe2-xZnxW (x = 0.0, 0.5, and 1.0) composites exhibited much higher real and imaginary parts of complex permittivity (εr), which is attributable to higher electron hopping between Fe2+ and Fe3+ ions, and also slightly higher real and imaginary parts of complex permeability (μr) due to higher saturation magnetization (Ms). Among all samples, a 2.8 mm-thick SrFe1·5Zn0·5W (x = 0.5) composite with the Vf of 90% exhibited the most appropriate for application in the region of 3.4–3.8 GHz, having the minimum reflection loss (RLmin) of ?46 dB at 3.6 GHz with the bandwidth of 0.43 GHz (3.38–3.81 GHz) below ?10 dB, while a 2.15 mm-thick SrFeZnW (x = 1.0) composite with the Vf of 70% showed the most appropriate for application in the region of 5.9–7.1 GHz, possessing the RLmin value of ?23.7 dB at 6.6 GHz with the bandwidth of 1.38 GHz (5.85–7.23 GHz) below ?10 dB. Consequently, partially Zn-substituted SrW-type hexaferrites are very promising microwave absorbers for 5G mobile communications in the Ku band (0.5–18 GHz).  相似文献   

19.
Intrinsic dielectric properties and tuning conductivity play important roles in microwave absorption. Novel multi-interfaced ZnSnO3@ fine ash (ZSFA) composite was successfully synthesized by coating cube-like ZnSnO3 particles with highly graphitized gasification fine ash. After hydrothermal reaction and Ostwald ripening process, fine ash was tightly wrapped around the assembly of ZnSnO3 particles. Related electromagnetic parameters and dielectric dissipation ability were discussed with different mass additions. Owing to the strong polarization relaxation, special conductive network, and multi-interface structural design, the as-synthesized ZSFA exhibited adjustable dielectric loss behaviors and efficient microwave absorption ability. When 50% mass added, the maximum reflection loss value of the obtained ZSFA-2 is ?47.8 dB at 2.5 mm thickness, showing the enhanced dielectric loss ability. Meanwhile, the widest effective absorption bandwidth (RL ≤ ?10 dB) can cover 7.0 GHz (11.0–18.0 GHz) at a thickness of only 2.2 mm, which included the entire Ku band. This unique pure dielectric composite exhibited high-performance electromagnetic wave attenuation property and broadband frequency response, thereby providing a new approach to the production of a superior microwave absorber.  相似文献   

20.
《应用陶瓷进展》2013,112(5):262-266
Abstract

Cu doped SiC nanopowders have been prepared via combustion synthesis, using silicon powder and carbon black as the raw materials, copper powder as the doping source and polytetrafluoroethylene as the chemical activator respectively. The microstructure of prepared nanopowders has been characterised by X-ray diffraction and scanning electronic microscope. The electric permittivities of prepared SiC nanopowders in the frequency range of 8·2–12·4 GHz have been determined. Results show that prepared β-SiC nanopowders have fine spherical particles and narrow particle size distribution, and a quantity of SiC whisker increases with increasing Cu doping content. The Cu3Si impurity has been generated when Cu content is up to 10%. The β-SiC doped with 10% Cu has the highest real part ?′ and dielectric loss tanδ values. The 5% Cu doped SiC nanopowder with matching thickness of 2 or 2·5 mm exhibits the best microwave absorption properties in the frequency range of 8·2–12·4 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号