首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(7):9330-9341
This study investigates the effects of densification on the deformation and fracture in fused silica under Vickers indentation by both the finite element analysis (FEA) and experimental tests. A refined elliptical constitutive model was used, which enables us to investigate the effects of the evolution of yield stress under pure shear and elastic properties with densification. The densification distribution was predicted and compared with experiments. The plastic deformation and indentation stress fields were used to analyze the initiation and morphology of various crack types. The formation mechanism of borderline cracks was revealed for the first time. This study reveals that the asymmetry of the densification distribution and elastic-plastic boundary significantly influences the cracking behavior. Under the Vickers indentation, conical cracks have the largest penetration depth. When these cracks emerge from a region far from the impression, they extend with constant radii to form circles on the sample surface. Otherwise, they tend to be initiated at the centers of the indenter-material contact edges before propagating towards the impression corners with increasing radii. Therefore, the borderline cracks consisting of successive partial conical cracks can form at a low load and makes them the first type of crack to appear.  相似文献   

2.
Inelastic deformation of anomalous glasses manifests in shear flow and densification of the glass network; the deformation behavior during indentation testing is linked strongly to both processes. In this paper, the indentation densification field of fused silica is investigated using depth-resolved Raman spectroscopy and finite element simulations. Through affecting the size of the indent, the normal load and the Raman laser spot size determine the spatial sampling resolution, leading to a certain degree of structural averaging. For appropriate combinations of normal load (indent size) and laser spot diameter, a maximum densification of 18.4% was found at the indent center. The indentation behavior was modeled by extended Drucker-Prager-Cap (DPC) plasticity, assuming a sigmoidal hardening behavior of fused silica with a densification saturation of 21%. This procedure significantly improved the reproduction of the experimental densification field, yielding a maximum densification of 18.2% directly below the indenter tip. The degree of densification was found to be strongly linked to the hydrostatic pressure limit below the indenter in accordance to Johnson's expanding cavity model (J. Mech. Phys. Solids, 18 (1970) 115). Based on the good overlap between FEA and Raman, an alternative way to extract the empirical correlation factor m, which scales structural densification to Raman spectroscopic observations, is obtained. This approach does not require the use of intensive hydrostatic compaction experiments.  相似文献   

3.
高密度熔融石英水口的研制   总被引:3,自引:1,他引:2  
从理论上分析了提高熔融石英水口质量的途径。试验结果表明:以优选的颗粒级配和NPS复合助剂,采用国内现有工艺,可生产出体积密度1.93—1.97g/cm3、耐压强度50—80MPa的高密度熔融石英水口。  相似文献   

4.
It is unclear how the densification of fused silica influences the damage of its precision optics subjected to machining. This paper presents a quantitative analysis of the indentation fracture of fused silica involving densification with the embedded center of dilation (ECD) model. The Hertzian stress field and the ECD-induced stress field were superposed to provide the overall stress distribution in the loading stage. A new method was established to accurately determine the strength of the ECD-induced stress field with densification effects. With the aid of the ECD model, the starting locations, initiation stages and initiation sequence of crack morphologies were predicted by analyzing the stress fields. To quantitatively study the initiation of conical cracks in fused silica, the strain energy release rate was calculated by linear elastic fracture mechanics (LEFM). The predicted minimum threshold load leading to conical cracking was consistent with the measured values.  相似文献   

5.
6.
7.
A novel approach for the fabrication of core packing via silica sol gel-casting is described. Concentrated slurry dispersed in silica sol with high solid loading but low viscosity is successfully prepared at about pH 10.2. In situ consolidation of the slurry is realized through adjustment of NH4Cl concentration to control the gelation time of the slurry. High compaction and uniform green body is obtained by gel-casting technology without de-airing process. The results from flexural strength tests show that wet gel bodies with 0.5 wt.% calcium aluminate obtained by silica sol gel-casting have exceptionally high strength, which are responsible for the integrity of core packing during autoclaving.  相似文献   

8.
In this paper, the influence of phase transformation on the properties and fracture behaviour of fused silica refractory was investigated. The virgin fused silica refractory is amorphous, and possible failure is attributed to the propagation of a single crack in the structure. Due to the crystallization and phase transformation of low-/high- temperature cristobalite subpolymorphs occurring during the heat treatment, microcracks are formed especially in the matrix and at the grain boundary. This microcracking enables the development of sizable fracture process zone, which is responsible for the increase of specific fracture energy even with the decrease of strength. Therefore, the heat-treated specimens exhibit lower brittleness and higher strain tolerance before failure compared with the virgin fused silica refractory. All of these properties represent a better thermal shock resistance. Furthermore, microcracking causes a characteristic temperature dependence of Young’s Modulus due to phase transformation and partial crack closure at increased temperatures.  相似文献   

9.
In order to overcome intrinsic brittleness and poor mechanical properties of fused silica (FS), boron nitride nanosheets (BNNSs) as a novel reinforcement were employed for fabrication of BNNSs/fused silica composites. BNNSs with micron lateral size were homogeneously dispersed with FS powder using a surfactant-free flocculation method and then consolidated by hot pressing. The flexural strength and fracture toughness of the composite with the addition of only 0.5 wt.% BNNSs increased by 53% and 32%, respectively, compared with those of pure FS. However, for higher BNNSs contents the improvement in mechanical properties was limited. Microstructural analyzes have shown that the toughening mechanisms are combinations of the pull-out, crack bridging, and crack deflection mechanisms.  相似文献   

10.
《Ceramics International》2022,48(4):5130-5138
By surface modification with APTMS, spontaneous coagulation casting (SCC) of fused silica based on Isobam was achieved and the possible coagulation and molding mechanism is proposed. Through the interaction between the polar groups on the Isobam molecular chain and the incorporated –NH2 groups on the surface of the silica particles, Isobam molecular chains were adsorbed on the surface of particles, which initiate the formation of flocs and the solidification of the suspension. The addition of dispersant TMAH results in the hydrolyzation of Isobam, forming more –COO, which effectively improves the fluidity and stability of the suspension. Then the zeta potential, rheological properties and coagulation behavior of the suspension were systematically investigated and the fused silica suspension with high solid content (up to 52 vol%), low viscosity and good coagulation properties were prepared at 1.8 wt% TMAH and 0.5 wt% Isobam dosage. After sintering at 1260 °C for 4 hours, the fused silica ceramics (50 vol% solid content) shows a high bending strength of 61.59 MPa, the lowest dielectric loss tanδ of 8.46×10-4 and the dielectric constant of 3.72. Thus, this work provides a simple and effective method for preparing fused silica and other ceramics with negative surface charge by Isobam SCC.  相似文献   

11.
The fracture strength of five HVOF coatings, which are made of hard metals, Tribaloy alloy, and superalloys, respectively, coated on 1018 low carbon steel substrate, is studied under Vickers indentation, associated with FEA stress computation. The cross sections of the coating specimens are examined on a Hitachi Model S-570 scanning electron microscope (SEM), which investigates the quality and measures the geometry of the coatings. The mechanical properties of the coatings and the substrate are determined in the cross sections using the nano-indentation technique. The cracking behavior of the coatings under different indentation loads is investigated using a Vickers hardness tester. Three-dimensional finite element analysis (FEA) simulation of the Vickers indentation test is conducted to determine the stress fields in the coating/substrate systems in order to understand the fracture mechanisms of the coatings under the indentation loads using the ABAQUS software package. The FEA stress results are in good agreement with the experimental observation of Vickers indentation.  相似文献   

12.
The effects of exchanging Na+ with K+ on the mechanical and mechanochemical properties of a soda lime silica (SLS) glass were investigated. It is known that replacing smaller modifier ions with bigger ions in the silicate glass network, at temperatures below the glass transition (Tg), produces a compressive stress in the subsurface region that enhances resistance to mechanical damages. This study found that when Na+ ions in SLS are exchanged with K+ ions at 400°C, the hardness, indentation fracture toughness, and crack initiation load of the surface are increased, which is consistent with the chemical strengthening effect. However, the resistance to mechanochemical wear in a near-saturation humidity condition (relative humidity RH = 90%) is deteriorated. When K+ ions are exchanged back with Na+ ions at 350°C, the wear resistance in high humidity conditions is recovered. These results indicate that the improvement of mechanical properties under indentation normal to the surface is irrelevant with the resistance to mechanochemical wear under tangential shear at the surface. Based on the analysis of the surface chemical composition, silicate network structure, and hydrogen-bonding interactions of hydrous species in the subsurface region, it is proposed that the leachable Na+ associated with non-bridging oxygen and subsurface hydrous species in the silicate network play more important roles in the mechanochemical wear of SLS at high RH.  相似文献   

13.
In order to improve the gas permeability and thermal shock resistance of the ceramic membranes applied in high temperature gas-solid separation techniques, fused silica and graphite particles were used as the primary raw material and pore-former agent, and the spray coating based-on PVA sealing was applied to prepare the separation membrane. These approaches remarkably decreases filtration resistance by increasing support permeability and reducing the intrusion of ceramic membrane forming particles into the support as well as the thickness of the membrane. The fabricated membrane had an average pore diameter of 9.85?μm and a gas permeability value of 8.2?×?104?m3/(m2 h bar), its dust removal efficiency reached 98.6%.  相似文献   

14.
Poor correlation between indentation fracture resistance, KIFR, and fracture toughness, KIC, has long been considered a weak point of the indentation fracture (IF) method of materials analysis. The present work therefore assessed the reliability of the experimental data that has historically been used for comparisons of KIFR and KIC. A painstaking survey of primary literature reports concerning the IF method revealed that the comparisons of KIC with KIFR in most studies were imperfect because both KIC and KIFR were measured using unreliable techniques and because improper test materials such as silicate glass were employed. These findings indicate that the standard objections against the use of the IF model are not well supported, and also that the majority of the empirically-derived calibration constants used in various IF equations are suspect. Accordingly, it is evident that new experimental measurements using the latest and most reliable techniques will be required to allow well-informed discussions of the validity of this test method in future.  相似文献   

15.
徐立  李福军  李景前 《轮胎工业》2008,28(4):195-197
以245/50R16轮胎为例,利用增强材料的弹塑性特征,在轮胎有限元分析中考虑增强材料的残余应力,通过与不计残余应力时的有限元模拟结果进行对比分析,考察残余应力对轮胎外缘尺寸变化和稳态滚动半径等模拟结果的影响.结果表明,不考虑残余应力的模拟结果能达到工程要求.  相似文献   

16.
引言双酚A(bisphenol A,BPA)是一种重要的有机中间体,是生产聚碳酸酯(PC)树脂及环氧(EP)树脂的主要原料。工业上BPA由苯酚和丙酮缩合而成,现也可通过解聚废弃聚碳酸酯回收得到。聚碳酸酯、环氧树脂作为食品容器或生物材  相似文献   

17.
The residual carbon content of ultra-fine hafnium carbide (HfC) powder was controlled by the optimization of the synthesis process, and the effect of residual carbon on the densification of HfC powder was analyzed. The amount of residual carbon in the HfC powder could be reduced by the de-agglomeration of HfO2 powder before the carbo-thermal reduction (CTR) process. The average particle size of HfO2 powder decreased from 230 to 130 nm after the de-agglomeration treatment. Ultra-fine (d50: 110 nm) and highly pure (metal basis purity: >99.9 % except for Zr) HfC powder was obtained after the CTR at 1600 °C for 1 h using the C/Hf mixing ratio of 3.3. In contrast, the C/Hf ratio increased to 3.6 without the de-agglomeration treatment, indicating that a large amount of excess carbon was required for the complete reduction of the agglomerated HfO2 particles. HfC ceramics with high relative density (>98 %) were obtained after spark plasma sintering at 2000 °C under 80 MPa pressure when using the HfC powder with low excess carbon content. In contrast, the densification did not complete at a higher temperature (2300 °C) and pressure (100 MPa) when the HfC powder contained a large amount of residual carbon. The results clearly indicated that residual carbon suppressed the densification of HfC powder in case the carbide powder had low oxygen content, and the residual carbon content could be controlled by the optimization of the synthesis process. The average grain size and Vickers hardness of the sintered specimen were 6.7(±0.7) μm and 19.6 GPa, respectively.  相似文献   

18.
Photophysical studies, utilizing pyrene, are used to investigate the compaction of porous silica. Conventional studies show that the volume of this material is markedly reduced (4×) on compression to 1 G Pa. The nature of the processes giving rise to this volume change vary with the logarithm of the applied pressure. Organic molecules in particular pyrene, indicate that the surface of the silica wrinkles and provides new adsorption sites that screen the adsorbate from other molecules such a O2, NH3, and CCl4. At high pressures a portion of the adsorbate is completely trapped in silica, if loaded onto the material prior to compaction. Adsorbates with weak bonds, e.g., bromopyrene are chemically altered on compaction in silica. The data amplify earlier studies on the uncompacted system, and confirm the heterogeneous environment of SiO2 at the sites where organic molecules are adsorbed.  相似文献   

19.
The effect of temperature and heating rate on the densification of ytterbia (Yb2O3), with and without titania (TiO2) doping was investigated. It is shown that up to a certain doping level, titania doping enhances the densification behaviour of ytterbia. The effect of titania doping on crystal structure confirms that titania is substitutionally incorporated in ytterbia up to the solubility limit, which corresponds well with the densification results. The increased densification rate of titania-doped ytterbia is attributed to the formation of cation vacancy and lattice distortion. Using constant heating rate experiments, the activation energy for densification has been calculated and it is shown that in the intermediate density range (60 % to 85 %), the activation energy is independent of the density. Titania doping increases the activation energy for densification.  相似文献   

20.
In this article we present the result of a comparative study of two kinds of polymerization methods—solution polymerization (sol. poly.) and dispersion polymerization (dis. poly.) for grafting polymer onto silica. As a model for the grafting polymerization reaction, styrene was chosen as the monomer and azo diisobutyronitrile (AIBN) as the initiator. The study aims at supplying theoretical reference for better selecting polymerization method to graft polymer on the silica particle surface. First, monolayers of 3‐methacryloylpropyl trimethoxysilane were chemically bonded onto the surfaces of micrometer‐sized silica gel particles, and so double bonds were immobilized onto the silica surface. Second, the copolymerizations between the immobilized double bonds and the monomer styrene were carried out, homopolymerizations of styrene followed, and finally polystyrene was grafted to the silica surfaces. Two kinds of polymerization methods, sol. poly. and dis. poly., were adopted respectively, and the effects of polymerization methods on grafting process were examined mainly. At the same time, the effects of different polymerization conditions on the grafting degree were researched. It was found that in the dis. poly. system the grafting degree is obviously higher than that in the sol. poly. system under the same polymerization conditions, and the grafting degree can go up to 47%, i.e. 47g/100g. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5808–5817, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号