首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multiscale structural design was innovatively adopted herein to increase the toughness of monolithic HfB2 ceramics. SiC whiskers (SiCw) and graphene oxide (GO) were used as fillers for the HfB2 matrix, whereas a ductile W foil was introduced as an interlayer to synthesize laminated HfB2-SiCw-rGO/W ceramics. Monolithic HfB2-SiCp (particulate) and laminated HfB2-SiCp/W ceramics were prepared using the same routes and used as controls. Following tape casting and spark plasma sintering at 1800°C, the toughness of the prepared laminated HfB2-SiCw-rGO/W samples was increased to 14.2 ± 0.6 MPa·m1/2, with minimal sacrifice in flexural strength (421 ± 16 MPa). Morphological analysis of the fracture surface revealed the synergistic effects of micro-toughening (including bridging and pullout of whiskers and rGO) and macro-toughening (including crack deflection, bifurcation, and delamination) mechanisms responsible for improving the fracture toughness of the laminated HfB2-SiCw-rGO/W composites.  相似文献   

2.
《Ceramics International》2016,42(12):14066-14070
Ultrahigh temperature ZrB2-SiCw-Graphene ceramic composites are fabricated by hot pressing ZrB2-SiCw-Graphene oxide powders at 1950 °C and 30 MPa for 1 h. The microstructures of the composites are characterized by Scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The results show that multilayer graphene nanosheets are achieved by thermal reduction of graphene oxide during sintering process. Compared with monolithic ZrB2 materials, flexural strength and fracture toughness are both improved due to the synergistic effect of SiC whisker and graphene nanosheets. The toughening mechanisms mainly are the combination of SiC whisker and graphene nanosheets crack bridging, pulling out.  相似文献   

3.
《Ceramics International》2017,43(9):6786-6790
As-received and pre-coated SiC whiskers (SiCw)/SiC ceramics were prepared by phenolic resin molding and reaction sintering at 1650 °C. The influence of SiCw on the mechanical behaviors and morphology of the toughened reaction-bonded silicon carbide (RBSC) ceramics was evaluated. The fracture toughness of the composites reinforced with pre-coated SiCw reached a peak value of 5.6 MPa m1/2 at 15 wt% whiskers, which is higher than that of the RBSC with as-received SiCw (fracture toughness of 3.4 MPa m1/2). The surface of the whiskers was pre-coated with phenolic resin, which could form a SiC coating in situ after carbonization and reactive infiltration sintering. The coating not only protected the SiC whiskers from degradation but also provided moderate interfacial bonding, which is beneficial for whisker pull-out, whisker bridging and crack deflection.  相似文献   

4.
In this study, SiC whisker (SiCw) was introduced to ZrB2 matrix layer of laminated ZrB2/BN ceramics to improve fracture toughness. Laminated ZrB2-SiCw/BN ceramics were prepared by tape casting and spark plasma sintering. For comparison, monolithic ZrB2-SiCw and laminated ZrB2-SiCp/BN ceramics were also prepared using the same method. The introduction of SiC whiskers increased fracture toughness of laminated ZrB2-SiCw/BN ceramics to 13.31?±?0.33?MPa?m1/2 for all samples. This was related to the multi-scale toughening mechanism, including delamination and crack deflection issued from the laminate structure at the macroscopic level, as well as whiskers bridging and pullout at the microscopic view. The R-curve behaviors of all samples revealed improved resistance to crack propagation of laminated ZrB2-SiCw/BN when compared to ZrB2-SiCp/BN and ZrB2-SiCw issued from multi-scale toughening design.  相似文献   

5.
ZrB2-based ceramics with SiCw were produced by hot pressing at 1750 °C for 1 h from mixed powders after adding liquid polycarbosilane. The obtained ZrB2-SiCw composites had toughness up to 7.57 MPa m1/2, which was much higher than those for monolithic ZrB2, SiC particles reinforced ZrB2 composites, and other ZrB2–SiCw composites directly sintered at high temperatures. The added liquid polycarbosilane could reduce the sintering temperatures and restrict the reaction of matrix with whisker, which led to fewer damages to the whisker and high fracture toughness.  相似文献   

6.
《Ceramics International》2023,49(1):392-402
Silicon carbide ceramic matrix composites are widely used in aerospace field due to their advantages of high temperature resistance, high strength and corrosion resistance. However, its application is greatly limited because of the difficulty in preparing complex shape structures by traditional machining methods. Here, a new strategy for preparing SiCw/SiC complex structure by combining direct ink writing with reaction bonding is proposed. A water-based slurry consisting of silicon carbide, carbon powder and silicon carbide whisker was developed. The influence laws of C content and SiCw content in slurry on sintering properties of direct-written samples were studied. The reaction bonding mechanism and whisker reinforcing and toughening mechanism were analyzed by means of microstructure and phase composition. The results show that the slurry exhibits shear thinning behavior with stress yield point, and its flow behavior and plasticity meet the requirements of direct writing. When the carbon content is 6.4 wt%, the maximum flexural strength is 239.3 MPa. When 15 wt% SiCw was added, the flexural strength of the composite reached 301.6 MPa, and when 20 wt% SiCw was added, the fracture toughness of the composite reached 4.02 MPa m1/2, which was increased by 26% and 18% compared with single-phase SiC, respectively. The reinforcing and toughening mechanisms of the whiskers mainly include whisker pullout, crack deflection and whisker bridging. After direct ink writing and reaction bonded, the whole process shows good near net forming ability. 3D printed SiCw/SiC composites have great application prospects in aerospace field.  相似文献   

7.
《Ceramics International》2020,46(8):11735-11742
Titanium carbide (TiC) composites containing 10 vol% silicon carbide whisker (SiCw) were spark plasma sintered at different temperatures of 1800, 1900, and 2000 °C under a pressure of 40 MPa and a holding time of 7 min. At the sintering temperature of 1900 °C, the relative density, Vickers hardness, and flexural strength of the sintered samples hit their maximum values of 98.7%, 24.4 GPa, and 511 MPa, respectively. The microstructural characteristics of the sintered samples were assessed by optical and field emission scanning electron microscopy (FESEM) and XRD. The results revealed that at 1900 °C, the dispersion of SiCw in the TiC matrix was homogenous, no chemical reaction took place between the reinforcement and the matrix, and produced a fine-grained microstructure. It was found that the thermal conductivity of SPSed samples did not have the same trend with relative density and mechanical properties. A maximum value of 32.3 W/mK was measured for the thermal conductivity of the composite sintered at 2000 °C.  相似文献   

8.
《Ceramics International》2023,49(13):21587-21601
SiCw-reinforced WC-10Ni3Al cemented carbide was prepared by microwave sintering method, and the effects of the sintering temperature and SiCw content on the microstructure and mechanical properties of WC-10Ni3Al cemented carbide were investigated; the promotion effect and strengthening mechanism of SiCw were then analysed. The experimental results showed that the relative density, hardness, flexural strength and fracture toughness of WC-10Ni3Al cemented carbide increased and then decreased with increasing SiCw addition and sintering temperature. When the sintering temperature was 1500 °C and the content of SiCw was 0.3 wt%, the sample reached the highest mechanical properties and had a relative density of 96.5%, hardness of 1570 HV, flexural strength of 1275 MPa and fracture toughness of 13.1 MPa mm1/2, which were 4.0%, 23.1%, 12.5% and 8.1% higher than those of the sample without SiCw, respectively. During microwave sintering of WC-Ni3Al, the addition of an appropriate SiCw content can increase the microwave absorption of the sample, and produce many micro-high-temperature regions within the sample, which can accelerate the generation of the Ni3Al liquid phase. This promotes liquid phase flow to fill pores and rearrange the WC grains, thereby improving density and mechanical properties of the sample. The strengthening mechanisms of SiCw on microwave sintered WC-Ni3Al consist of promoting densification enhancement, fine-grained strengthening, and solid solution strengthening of Ni3Al by Si atoms.  相似文献   

9.
Homogenous distribution of whiskers in the ceramic matrix is difficult to be achieved. To solve this problem, B4C-SiCw powder mixtures were freeze dried from a slurry dispersed by cellulose nanofibrils (CellNF) in this work. Dense B4C ceramics reinforced with various amounts of SiCw up to 12 wt% were consolidated by spark plasma sintering (SPS) at 1800 °C for 10 min under 50 MPa. During this process, CellNF was converted into carbon nanostructures. As iron impurities exist in the starting B4C and SiCw powders, both thermodynamic calculations and microstructure observations suggest the dissolution and precipitation of SiCw in the liquids composed of Fe-Si-B-C occurred during sintering. Although not all the SiCw grains were kept in the final ceramics, B4C-9 wt% SiCw ceramics sintered at 1800 °C still exhibit excellent Vickers hardness (35.5 ± 0.8 GPa), flexural strength (560 ± 9 MPa) and fracture toughness (5.1 ± 0.2 MPa·m1/2), possibly contributed by the high-density stacking faults and twins in their SiC grains, no matter in whisker or particulate forms.  相似文献   

10.
The high sintering temperature would have a great tendency to damage the morphology and thus properties of the silicon carbide whisker (SiCw) in high entropy carbide-silicon carbide whisker (HEC-SiCw) composites, which, in turn, would impact the effectiveness of the operative toughening mechanisms. The objective of this study was to achieve full contributions to the toughening effects of SiCw by preparing (Ti, Zr, Nb, Ta, Mo)C-SiCw composites at low temperature (1600 ℃) using cobalt as additives. Results showed that the fracture toughness of the (Ti, Zr, Nb, Ta, Mo)C bulk reinforced with 20 vol% SiCw and 5 vol% Co was 7.2 MPa?m1/2, which was much higher than that of the (Ti, Zr, Nb, Ta, Mo)C bulk only sintered with 5 vol% Co (3.4 MPa?m1/2). Meanwhile, it was also higher than that of the reported HEC-20 vol% SiCw composite sintered at 2000 ℃ (4.3 MPa?m1/2). For the fracture toughness of HEC-SiCw composites, it was significantly increased by the introduction of damage-free SiCw.  相似文献   

11.
Dense polycrystalline cBN (PcBN)–SiCw composites were fabricated by a two-step method: First, SiO2 was coated on the surface of cubic boron nitride (cBN) particles by the sol-gel method. Then, silicon carbide whisker (SiCw)- coated cBN powder was prepared by carbon thermal reaction between SiO2 and carbon powders at 1500°C for 2 hour. Then, cBN–SiCw complex powders were sintered by high-pressure and high-temperature sintering technology using Al, B, and C as sintering additives. The phase compositions and microstructures of cBN–SiCw composites were investigated by X-ray diffraction and scanning electron microscopy, respectively. It was found that the SiCw and Al3BC3 had been fabricated by in situ reaction, which cannot only promote densification but also improve mechanical properties. The relative density of PcBN composites increased from 96.3% to 99.4% with increasing SiCw contents from 5 to 20 wt%. Meanwhile, the Vickers hardness, fracture toughness and flexural strength of as-obtained composites exhibited a similar trend as that of relative density. The composite contained 20 wt% of SiCw exhibited the highest Vickers hardness and fracture toughness of 42.7 ± 1.9 GPa and 6.52 ± 0.21 MPa•m1/2, respectively. At the same time, the flexural strength reached 406 ± 21 MPa.  相似文献   

12.
The addition of fillers in preceramic precursor plays an important role in maintaining the shape and diminishing defects in polymer-derived-ceramics. SiCw/SiCp reinforced 3D-SiC was prepared via direct ink writing of polycarbosilane-based slurries. Effects of SiCp content and the sintering temperature on the microstructure, pyrolysis process, composition and mechanical properties were studied. Complex structures of SiC ceramics with good retention were obtained using PCS/n-hexane/SiCw-SiCp solutions. Printed lines showed a feature of core-shell structure, owing to the decreased shear stress along the radial direction of the nozzle. Increased SiCp/PCS ratios greatly decreased the linear shrinkage and weight loss from 18.2% to 8.3% and 17.5% to 10.6%, respectively. Satisfactory tensile strength of 21.3 MPa was achieved for 3D-SiC lattices with a SiCp/PCS ratio of 0.7, owing to the low porosity and particle reinforcement. This study provides a way to prepare strengthened 3D ceramics using direct ink writing via the polymer precursor routes.  相似文献   

13.
Laminated ZrB2-SiCw ceramics with a thin Ti interlayer were synthesized via spark plasma sintering at varying temperatures. The effect of sintering temperature on the interlayer morphology, phase composition, and mechanical properties of laminated ZrB2-SiCw/Ti ceramics was assessed. With increasing sintering temperature from 1600 ℃ to 1800 ℃, element diffusion between the matrix and the interlayer gradually increased. The green-body ductile Ti gradually transformed into a multiphase mixture with increasing hardness at the interlayer, shortening the crack propagation path. The toughening mechanisms changed from delamination to deflection, leading to a decrease in fracture toughness from 15.30 ± 0.72 to 11.21 ± 0.45 MPa m1/2. Compared to monolithic ZrB2-SiCw ceramics, the introduction of multiple toughening mechanisms significantly improved the toughness of laminated ceramics with a small loss in strength. The electrical conductivity under parallel and perpendicular directions decreased with the decrease in residual Ti, with an important effect on electromagnetic effectiveness, reduced from 61.5 to 45.1 dB.  相似文献   

14.
To improve the reliability, especially the toughness, of the reaction bonded silicon carbide (RBSC) ceramics, silicon carbide whiskers coated with pyrolytic carbon layer (PyC-SiCw) by chemical vapor deposition (CVD) were introduced into the RBSC ceramics to fabricate the SiCw/RBSC composites in this study. The microstructures and properties of the PyC-SiCw/RBSC composites under different mass fraction of nano carbon black and PyC-SiCw were investigated methodically. As a result, a bending strength of 550 MPa was achieved for the composites with 25 wt% nano carbon black, and the residual silicon decreased to 11.01 vol% from 26.58 vol% compared with the composite of 15 vol% nano carbon black. The fracture toughness of the composites reinforced with 10 wt% PyC-SiCw, reached a high value of 5.28 MPa m1/2, which increased by 39% compared to the RBSC composites with 10 wt% SiCw. The residual Si in the composites deceased below to 7 vol%, resulting from the combined actively reaction of nano carbon black and PyC with more Si. SEM and TEM results illustrated that the SiCw were protected by PyC coating. A thin SiC layer formed of outer surface of whiskers can provide a suitable whisker-matrix interface, which is in favor of crack deflection, SiCw bridging and pullout to improve the bending strength and toughness of the SiCw/RBSC composites.  相似文献   

15.
《Ceramics International》2020,46(5):5773-5778
In this research work, the effects of silicon carbide (SiC) as the most important reinforcement phase on the densification percentage and mechanical characteristics of zirconium diboride (ZrB2)-matrix composites were studied. In this way, a monolithic ZrB2 ceramic (as the baseline) and three ZrB2 matrix specimens each of which contains 25 vol% SiC as reinforcement in various morphologies (SiC particulates, SiC whiskers, and a mixture of SiC particulates/SiC whiskers), have been processed through spark plasma sintering (SPS) technology. The sintering parameters were 1900 °C as sintering temperature, 7 min as the dwell time, and 40 MPa as external pressure in vacuum conditions. After spark plasma sintering, a relative density of ~96% was obtained (using the Archimedes principles and mixture rule for evaluation of relative density) for the unreinforced ZrB2 specimen, but the porosity of composites containing SiC approached zero. Also, the assessment of sintered materials mechanical properties has shown that the existence of silicon carbide in ZrB2 matrix ceramics results in fracture toughness and microhardness improvement, compared to those measured for the monolithic one. The simultaneous addition of silicon carbide particulates (SiCp) and whiskers (SiCw) showed a synergistic effect on the enhancement of mechanical performance of ZrB2-based composites.  相似文献   

16.
A pressureless sintering process, using a small amount of boron carbide (≤2 wt%) as sintering aid, was developed for the densification of hafnium diboride. Hafnium diboride ceramics with high relative density were obtained when the sintering temperature changed from 2100 °C to 2350 °C. However, the sintering mechanism was varied from solid state sintering (SSS, below 2300 °C) to liquid phase sintering (LPS, above 2300 °C). Boron carbide addition improved densification by removing the oxide impurities during solid state sintering and by forming a liquid phase which was well wetting hafnium diboride grains during liquid phase sintering process. The different roles of B4C on the microstructure development and mechanical properties of the sintered ceramics were investigated.  相似文献   

17.
《Ceramics International》2019,45(16):19808-19821
Silicon carbide whiskers (SiCw) in TiC had impressive impacts on the properties and made it possible for special applications which generally would not be conceivable with TiC alone. In the present work, SiCw reinforced TiC based composites were prepared by spark plasma sintering (SPS) technique, at the temperature of 1900 °C under the pressure of 40 MPa for sintering time of 7 min. To test out the effects of different amount of SiC whisker (0, 10, 20 and 30 vol%) on the characteristics of TiC, the sintered samples were investigated about sinterability and physical-mechanical properties. Microstructure observations and density measurements confirmed that the composites were dense with uniformly distributed reinforcement, and the specimen doped with higher than 10 vol% SiCw could attain higher relative density (>100%) than pure TiC and TiC–10 vol% SiCw. Also, the highest values for hardness (29.04 GPa) and thermal conductivity (39.2 W/mK) were achieved in specimen containing 30 vol% SiCw, whereas the optimum bending strength (644 MPa) was recorded in material containing 20 vol% SiCw. It seems that one of the reasons which contributes to this trend of properties variation is the generation of near-stoichiometric TiCx phase and new Ti3SiC2 compound.  相似文献   

18.
Uniform densification of relatively thick (~7 mm) consolidated boron carbide plates at relatively low temperatures (e.g. 1800°C) and low facture toughness are two of the primary challenges for further development of boron carbide applications. This work reports that these two challenges can be overcome simultaneously by adding 5 wt% alumina as a sintering aid. Nearly fully dense (97%), fine grained boron carbide (B4C) samples were produced using spark plasma sintering at 1700°C and above in the B4C‐5 wt% Al2O3 system. The alumina and boron carbide matrix reacted to form an Al5O6BO3 (a mullite‐like phase) during sintering. The Al5O6BO3 phase facilitated uniform densification via liquid phase sintering. This secondary phase is dispersed throughout the intergranular pores, providing obstacles for crack propagation and resulting in tougher boron carbide ceramics.  相似文献   

19.
《Ceramics International》2019,45(13):16496-16503
Reduced graphene oxide (rGO) sheets were uniformly dispersed in boron carbide ceramics by a heterogeneous co-precipitation method. This approach was used to improve the fracture toughness of boron carbide ceramics and to address the problem of agglomeration of graphene in the boron carbide matrix. Cetyltrimethyl ammonium bromide was used as a heterogeneous co-precipitation reaction initiator to prepare a homogeneously dispersed graphene oxide/boron carbide (GO/B4C) mixture. Reduced graphene oxide/boron carbide (rGO/B4C) powder mixtures with good dispersion were obtained by high temperature heat treatment. Dense rGO/B4C composite ceramics were fabricated by spark plasma sintering at 1800 °C and 50 MPa. The fracture toughness and flexural strength of the rGO/B4C with an rGO content of 2 vol% composite increased by 42% (from 3.43 to 4.88 MPa·m1/2) and 28% (from 372 to 476 MPa) compared with those of pure B4C, respectively. The markedly improved fracture toughness and flexural strength of the boron carbide ceramics were attributed to the effect of crack bridging and crack deflection by graphene sheets, graphene interface sliding, and pulling out of graphene.  相似文献   

20.
《Ceramics International》2023,49(18):29709-29718
Mechanical alloying and spark plasma sintering (SPS) were used to prepare dense SiAlCN ceramic and SiAlCN ceramic toughened by SiC whiskers (SiCw) or graphene nanoplatelets (GNPs). The influences of different reinforcements on the microstructure and fracture toughness were investigated. The SiAlCN ceramic exhibited a fracture toughness of 4.4 MPa m1/2 and the fracture characteristics of grain bridging, alternative intergranular and transgranular fracture. The fracture toughness of SiCw/SiAlCN ceramic increased to 5.8 MPa m1/2 and toughening mechanisms were crack deflection, SiCw bridging and pull-out. The fracture toughness of GNP/SiAlCN ceramic increased significantly, which was up to 6.6 MPa m1/2. GNPs played an important role in grain refinement, which resulted in the smallest grain size. Multiple toughening mechanisms, including crack deflection, crack branch, GNP bridging and pull-out could be found. The better toughening effect could be attributed to the larger specific surface area of GNPs and the appropriate interface bonding between GNPs and matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号