首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency.  相似文献   

2.
WO3 thin film is one of the most important and applied metal oxide semiconductors that have attracted the scientist’s attention in recent decades. WO3 thin films by two different methods: reactive and non-reactive RF magnetron sputtering deposited on soda lime glass. The effect of presence and absence of oxygen gas in system and RF power on structural, morphological and optical properties of thin films were investigated. The XRD analysis of the films shows the amorphous structure. Spectrophotometer analysis and calculation show that the optical properties of reactive sputtered layers were better than the non-reactive sputtered thin films. By changing deposition parameters, over 70 % transmission achieved for WO3 films. The results showed that reactive sputtering method improved the optical properties of layers and increased band gap up to 3.49 eV and on the other hand reduced roughness of thin films. On the whole, presence of oxygen in the chamber during sputtering improved properties of WO3 thin films.  相似文献   

3.
《应用陶瓷进展》2013,112(1):15-18
Abstract

Growth of ZnO thin films with c axis (002) orientation has been demonstrated at room temperature on Si(100), SiO2, and amorphous ZnO substrates by the rf magnetron sputtering method. The structural properties of the ZnO thin films were investigated with varying rf power. X-ray diffraction analysis revealed that increasing rf power helped to increase the c axis lattice constant and grain size, regardless of substrate material. Scanning electron microscopy indicated that the structural morphology of the ZnO films was not dependent on the substrate material.  相似文献   

4.
Cu(In1?xGax)Se2 (CIGS) thin films were prepared using a single quaternary target by RF magnetron sputtering. The effects of deposition parameters on the structural, compositional and electrical properties of the films were examined in order to develop the deposition process without post-deposition selenization. From X-ray diffraction analysis, as the substrate temperature and Ar pressure increased and RF power decreased, the crystallinity of the films improved. The scanning electron microscopy revealed that the grains became uniform and circular shape with columnar structure with increasing the substrate temperature and Ar pressure, and decreasing the RF power. The carrier concentration of CIGS films deposited at the substrate temperature of 500 °C was 2.1 × 1017 cm?3 and the resistivity was 27 Ω cm. At the substrate temperature above 500 °C, In and Se contents in CIGS films decreased due to the evaporation and it led to the deterioration of crystallinity. It was confirmed that CIGS thin films deposited at optimal condition had similar atomic ratio to the target value even without post-deposition selenization process.  相似文献   

5.
Zinc oxide thin films were prepared by the RF magnetron sputtering using a gas-timing technique whereby the flow of argon into the sputtering chamber was controlled by an on–off sequence. With this technique, polycrystalline ZnO thin films on glass substrates have been achieved without any thermal treatment of the substrate. In addition, the RF power and the gas-timing sequence can be fine-tuned to produce the hexagonal structure of ZnO thin films. X-ray diffraction (XRD) measurements confirm a (0 0 2) plane oriented wurtzite structure ZnO thin films. The optimized conditions for this hexagonal structure are an RF power of 30 W and an on–off gas-timing sequence of 50:2 s. The root mean square surface roughness of ZnO thin films measured by atomic force microscopy are in the range of 6.4–11.5 nm. The optical transmittance of ZnO thin films is over 85% in the visible range.  相似文献   

6.
《Ceramics International》2019,45(12):15077-15081
Calcium copper titanate (CCTO) thin films were deposited on indium tin oxide (ITO) substrates using radio frequency (RF) magnetron sputtering, at selected Ar:N2 flow rates (1:1, 1:2, 1:4, and 1:6 sccm) at ambient temperature. The effect of Ar:N2 flow rate on the morphology, optical and electrical properties of the CCTO thin films were investigated using FESEM, XRD, AFM, Hall effect measurement, and UV–Vis spectroscopy. It was confirmed by XRD analysis that the thin films were produced is CCTO with cubic crystal structure. As the flow rate of Ar:N2 increased up to 1:6 sccm, the thin film thickness reduced from 87 nm to 35 nm while the crystallite size of CCTO thin film decreased from 27 nm to 20 nm. Consequently, the surface roughness of thin film was halved from 8.74 nm to 4.02 nm. In addition, the CCTO thin films deposited at the highest Ar:N2 flow rate studied, at 1:6 sccm; are having the highest sheet resistivity (13.27 Ω/sq) and the largest optical energy bandgap (3.68 eV). The results articulate that Ar:N2 flow rate was one of the important process parameters in RF magnetron sputtering that could affect the morphology, electrical properties and optical properties of CCTO thin films.  相似文献   

7.
In this study, gallium oxide (Ga2O3) thin films were deposited on sapphire and n-Si substrates using Ga2O3 target by radio frequency magnetron sputtering (RFMS) at substrate temperature of 300 °C at variable RF power and deposition pressure. The effects of deposition pressure and growth power on crystalline structure, morphology, transmittance, refractive index and band gap energy were investigated in detail. X-ray diffraction results showed that amorphous phase was observed in all the as-deposited thin films except for the thin films grown at low growth pressure. All the films showed conversion to poly-crystal β-Ga2O3 phase after annealing process. When the deposition pressure increased from 7.5 mTorr to 12.20 mTorr, change in the 2D growth mode to 3D columnar growth mode was observed from the SEM images. Annealing clearly showed formation of larger grains for all the thin films. Lower transmission values were observed as the growth pressure increases. Annealing caused to obtain similar transmittance values for the thin films grown at different pressures. It was found that a red shift observed in the absorption edges and the energy band gap values decrease with increasing growth pressure. For as-deposited and annealing films, increasing sputtering power resulted in the increase refractive index.  相似文献   

8.
《Ceramics International》2016,42(7):7918-7923
In this paper, we report the fabrication and systematic characterization of Fe Doped ZnO thin Films. FexZn1−x O (x=0<0.05) films were prepared by RF magnetron sputtering on Si (400) substrate. Influence of Fe doping on structural, optical and magnetic properties has been studied. The X-ray diffraction (XRD) analysis shows that Fe doping has affected the crystalline structure, grain size and strain in the thin films. The best crystalline structure is obtained for 3% Fe Doping as observed from Atomic Force Microscopy (AFM) and X-ray diffraction (XRD). The magnetic properties studied using Vibrating Sample Magnetometer reveals the room temperature ferromagnetic nature of the thin films. However, changing the Fe concentration degrades the magnetic property in turn. The mechanism behind the above results has been discussed minutely in this paper.  相似文献   

9.
《Ceramics International》2017,43(2):1802-1808
The SnO thin films were deposited at low RF power densities by RF magnetron sputtering. According to XRD and XPS analyses, the SnO thin film comprised nanocrystalline orthorhombic SnO with a (110) orientation. Reducing RF power density resulted in better nanocrystallinity, changing hydrophobicity to hydrophilicity, and increasing the optical transmission in the UVvisNIR region. After annealing, the SnO thin film favored p-type conductivity and hydrophilicity. As the annealing temperature increased, the coexistence of nanocrystalline orthorhombic SnO and tetragonal SnO2 in the film clearly increased the optical transmission in the ultraviolet region. The SnO thin films after annealing at 500 ℃ in vacuum and N2 (200 sccm) exhibited a higher hole mobility and a better optical selection in the ultraviolet region, respectively.  相似文献   

10.
A LiPON–WO3 composite thin film (LPWON) was evaluated for use as a solid electrolyte in solid state electrochromic (EC) devices. LiPO4 and a WO3 (2 wt%) composite sputtering target was synthesized by a ball milling process. The LPWON thin films were deposited by RF magnetron sputtering in Ar + N2 and N2 atmospheres. The structural, electrochemical, and optical properties of the LPWON electrolytes were characterized by X-ray diffraction (XRD), UV–visible spectroscopy, and an impedance analyzer. EC mirrors with WO3 (coloring layer), LPWON (solid electrolyte), and stainless steel (mirror electrode) on ITO (transparent electrode) glass were fabricated to analyze the improved EC properties due to the LPWON electrolyte. The LPWON may lead to electrolytes with more stable potential cycle properties.  相似文献   

11.
Ba(ZrxTi1−x)O3 (BZxT1−x in short) thin films have been deposited on Pt/Ti/SiO2/Si substrates by radio frequency magnetron sputtering and their dielectric properties have been characterized as a function of sputtering parameters. The BZxT1−x thin films are amorphous when sputtered at rf power (Rp)=100 W and substrate temperature (ST)=300 °C. The crystalline phase of the BZxT1−x thin films appears when the substrate temperature increases from 300 to 400 and 500 °C, respectively, and the films have a high degree of (100) preferred orientation. The dielectric constant decreases with increasing measurement temperature, irrespective of the rf power and Zr content of the BZxT1−x thin films. The BZ0.3T0.7 thin films have a low dielectric loss tangent irrespective of the sputtering parameters. The dielectric constant of the BZ0.3T0.7 thin film increases with increasing Zr·(Zr+Ti)−1 ratio and deposition temperature but decreases with increasing working pressure. Besides, the dielectric constant suddenly increases from 244.0 to 284.1 when the rf power increases from 100 to 130 W, then it decreases from 284.1 to 270.0 when the rf power increases from 130 to 160 W. The dielectric constant also suddenly increases from 164.1 to 281.5 when the sputtering gas contains O2 from 0 to 10%, but its variation is insignificant when the sputtering gas contains O2 from 10 to 20%.  相似文献   

12.
Tridoping (Al–As–N) into ZnO has been proposed to realize low resistive and stable p-ZnO thin film for the fabrication of ZnO homojunction by RF magnetron sputtering. The tridoped films have been grown by sputtering the AlN mixed ZnO ceramic targets (0, 0.5, 1 and 2 mol%) on GaAs substrate at 450 °C. Here, Al and N from the target, and As from the GaAs substrate (back diffusion) takes part into tridoping. The grown films have been characterized by Hall measurement, X-ray diffraction, photoluminescence, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy. It has been found that all the films showed p-conductivity except for 2 mol% AlN doped film. The obtained resistivity (8.6×10−2 Ω cm) and hole concentration (4.7×1020 cm−3) for the best tridoped film (1 mol% AlN) is much better than that of monodoped and codoped ZnO films. It has been predicted that [(AsZn2VZn)+NO] acceptor complex is responsible for the p-conduction. The homojunction fabricated using the best tridoped ZnO film showed typical rectifying characteristics of a diode. The junction parameters have been determined for the fabricated homojunction by Norde's and Cheung's method.  相似文献   

13.
《Ceramics International》2016,42(13):14543-14547
Cu(In1−xGax)Se2 (CIGS) thin films were prepared by RF magnetron sputtering from a single quaternary target at multiple processing parameters. The structural, compositional, and electrical properties of the as-deposited films were systematically investigated by XRD, Raman, SEM, and Hall effects analysis. The results demonstrate that by adjusting the processing parameters, the CIGS thin films with a preferential orientation along the (112) direction which exhibited single chalcopyrite phase were obtained. The films deposited at relatively higher substrate temperature, sputtering power, and Ar pressure exhibited favorable stoichiometric ratio (Cu/(In+Ga):0.8–0.9 and Ga/(In+Ga):0.25–0.36) with grain size of about 1–1.5 µm, and desirable electrical properties with p-type carrier concentration of 1016−1017 cm−3 and carrier mobility of 10–60 cm2/Vs. The CIGS layers are expected to fabricate high efficiency thin film solar cells.  相似文献   

14.
Cerium ferrite (CeFeO3) thin films doped with vanadium (V:CeFeO3) were grown on SiO2 quartz glass and <100>‐oriented SrTiO3 (STO) crystal substrates by the radio‐frequency magnetron sputtering method in this study. The effects of crystallization, substrate, and V‐doping on the quality, the magnetic property and the magneto‐optical property of as‐prepared films are investigated. V:CeFeO3 film grown on STO substrate has better crystallinity and has better lattice integrity due to the higher lattice matching between substrate and film. The magnetic hysteresis loop and the magnetic circular dichroism spectra show that the magnetization strength and the magneto‐optical properties of V:CeFeO3 films have the significant anisotropy. Moreover, V‐doping and the stress lead to the change in easy magnetization direction of film. It shows that the perovskite B‐site doping with transition‐metal ion has significant influence on the magnetic and the magneto‐optical properties of CeFeO3 thin films.  相似文献   

15.
The present work describes structural, morphological, and antibacterial properties of thin film coatings based on tungsten oxide material on stainless-steel substrates. Thin films were prepared by RF magnetron sputtering of W targets in the oxygen/argon plasma environment in 60 W sputtering power. The characterization of the specimens was made on the basis of microstructure and antibacterial properties of the thin films surface. The effect of O2/Ar ratio on the structure, morphology, and antibacterial properties of the tungsten oxide thin films was studied. Methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) were used to assess the properties of deposited thin films. XRD peak analysis indicates (100) and (200) of WO3 phase with hexagonal structure. Moreover, the micro-strain, grain size, and dislocation density were obtained. It is noteworthy that by increasing the oxygen percentage from 10% to 20%, the grain size decreases from 81 to 23 nm while the film micro-strain and dislocation density increases. The SEM results illustrates that tungsten oxide thin films are made of interconnected nano-points in a chain shape with sphere-shaped grains with diameter variation from 10 to 100 nm. The FTIR spectra displays four distinct bands corresponds to O–W–O bending modes of vibrations and W–O–W stretching modes of the WO3 films. The antibacterial effects of tungsten oxide thin films on steel stainless substrate against Escherichia coli bacteria are also examined for the first time and our observation shows that the number of bacteria on all tungsten oxide samples decreases after 24 h. The samples exhibit an excellent antibacterial performance. This paper renders a strategy through which the tungsten oxide thin films for antibacterial purpose and proposes that WO3 thin films are ideal for various medical applications including stainless steel medical tools, optical coatings, and antibacterial coatings.  相似文献   

16.
Highly transparent and conducting fluorine-doped ZnO (FZO) thin films were deposited onto glass substrates by radio-frequency (RF) magnetron sputtering, using 1.5 wt% zinc fluoride (ZnF2)-doped ZnO as sputtering target. Structural, electrical, and optical properties of the FZO thin films were investigated as a function of substrate temperature ranging from room temperature (RT) to 300°C. The cross-sectional scanning electron microscopy (SEM) observation and X-ray diffraction analyses showed that the FZO thin films were of polycrystalline nature with a preferential growth along (002) plane perpendicular to the surface of the glass substrate. Secondary ion mass spectrometry (SIMS) analyses of the FZO thin films showed that there was incorporation of F atoms in the FZO thin films, even if the substrate temperature was 300°C. Finally, the effect of substrate temperature on the transmittance ratio, optical energy gap, Hall mobility, carrier concentration, and resistivity of the FZO thin films was also investigated.  相似文献   

17.
《Ceramics International》2023,49(16):26943-26949
Zinc oxide semiconductors have received significant research attention over the past decade owing to their diverse applications. In this paper, we report the development and characterisation of ZnO thin films prepared by radio-frequency (RF) magnetron sputtering. The optical, anti-icing, wettability, and structural properties of the films were investigated at various sputtering power levels and temperatures. With an increase in the power from 175 to 250 W, the ZnO thin films showed fine (002) structures. X-ray diffraction analysis of the coated thin films revealed a considerable increase in the (002) peak intensity along the c-axis with increasing power and temperature. Increasing the sputtering power from 175 to 250 W and the deposition temperature from 150 to 300 °C led to an increase in the average size of the grains from 10.548 to 13.151 nm and from 9.97 to 13.151 nm, respectively. The water contact angle possibly depends on the RF power and temperature employed for material deposition. Within the 350–800 nm range, the prepared films achieved optical transmissions of 92%–88%, refractive indices of 1.52–1.50, and band gaps of 3.28–3.24 eV. The anti-icing properties were also improved by adjusting the sputtering power and temperature during material deposition.  相似文献   

18.
The glassy solid electrolyte Lithium phosphorous oxynitride (LiPON) has been widely researched in thin film solid state battery format due to its outstanding stability when cycled against lithium. In addition, recent reports show thin film LiPON having interesting mechanical behaviors, especially its ability to resist micro-scale cracking via densification and shear flow. In the present study, we have produced bulk LiPON glasses with varying nitrogen contents by ammonolysis of LiPO3 melts. The resulting compositions were determined to be LiPO3-3z/2Nz, where 0 ≤ z ≤ 0.75, and the z value of 0.75 is among the highest ever reported for this series of LiPON glasses. The short-range order structures of the different resulting compositions were characterized by infrared, Raman, 31P magic angle spinning nuclear magnetic resonance, and X-ray photoelectron spectroscopies. Instrumented nano-indentation was used to measure mechanical properties. It was observed that similar to previous studies, both trigonally coordinated (Nt) and doubly bonded (Nd) N co-exist in the glasses in about the same amounts for z ≤ 0.36, the limit of N content in most previous studies. For glasses with z > 0.36, it was found that the fraction of the Nt increased significantly while the fraction of Nd correspondingly decreased. The incorporation of nitrogen increased both the elastic modulus and hardness of the glass by approximately a factor of 1.5 when N/P ratio reaches 0.75. At the same time, an apparent embrittlement of the glass was observed due to nitridation, which was revealed by nanoindentation with an extra sharp nanoindenter tip.  相似文献   

19.
《Ceramics International》2017,43(7):5654-5660
Sb doped SnO2 thin films were deposited on quartz substrates by magnetron sputtering at 600 °C and the effects of sputtering power density on the preferential orientation, structural, surface morphological, optical and electrical properties had been studied. The XRD analyses confirm the formation of cassiterite tetragonal structure and the presence of preferential orientation in (2 1 1) direction for tin oxygen thin films. The dislocation density analyses reveal that the generated defects can be suppressed by the appropriate sputtering power density in the SnO2 lattice. The studies of surface morphologies show that grain sizes and surface roughness are remarkably affected by the sputtering power density. The resistivity of Sb doped SnO2 thin films gradually decreases as increasing the sputtering power density, reaches a minimum value of 8.23×10−4 Ω cm at 7.65/cm2 and starts increasing thereafter. The possible mechanisms for the change in resistivity are proposed. The average transmittances are more than 83% in the visible region (380–780 nm) for all the thin films, the optical band gaps are above 4.1 eV. And the mechanisms of the variation of optical properties at different sputtering power densities are addressed.  相似文献   

20.
Multicomponent TeO2–Bi2O3–ZnO (TBZ) glass thin films were prepared using RF magnetron sputtering under different oxygen flow rates. The influences of oxygen flow rate on the structural and optical properties of the resulting thin films were investigated. We observed that thin films sputtered in an oxygen‐rich environment are optically transparent while those sputtered in an oxygen‐deficient environment exhibit broadband absorption. The structural origin of the optical property variation was studied using X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman Spectroscopy, and transmission electron microscopy which revealed that the presence of under‐coordinated Te leads to the observed optical absorption in oxygen‐deficient films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号