首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2023,49(13):21815-21824
Silicon nitride (Si3N4) ceramics, with different ratios of fine and coarse α-Si3N4 powders, were prepared by spark plasma sintering (SPS) and heat treatment. Further, the influence of coarse α-Si3N4 powder on densification, microstructure, mechanical properties, and thermal behavior of Si3N4 ceramics was systematically investigated. Compared with fine particles, coarse particles exhibit a slower phase transition rate and remain intact until the end of SPS. The remaining large-sized grains of coarse α-Si3N4 induce extensive growth of neighboring β-Si3N4 grains and promote the development of large elongated grains. Noteworthy, an appropriate number of large elongated grains distributed among fine-grained matrix forms bimodal microstructural distribution, which is conducive to superior flexural strength. Herein, Si3N4 ceramics with flexural strength of 861.34 MPa and thermal conductivity of 65.76 W m−1 K−1 were obtained after the addition of 40 wt% coarse α-Si3N4 powder.  相似文献   

2.
《Ceramics International》2016,42(14):15679-15686
Si3N4 ceramic was densified by hot pressing sintering at 1750 °C for 1 h under the uniaxial pressure of 20 MPa in N2 atmosphere with YF3 and MgO as sintering additives. The thermal conductivities of SN-YF specimen were both higher than that of Si3N4 ceramic sintered with Y2O3 and MgO before and after annealing treatment. The grain size and aspect ratio in SN-YF specimen were both bigger than those in the SN-YO specimen, which was beneficial for the creation of high thermal conductive path. On the other hand, the improvement of thermal conductivity by the addition of YF3 might be attributed to the reduction of the grain boundary phase due to the evaporation of SiF4, and the resultant reduction of the lattice oxygen due to the reduction of SiO2 in the grain boundary phase. The {0001} direction of grains had the probability of growing along the hot pressing direction in the SN-YF specimen, which was beneficial for the improvement of thermal conductivity while the {0001} direction grew along the X0-Y0 plane in the SN-YO specimen. The mechanical properties of SN-YF specimen were comparable to those of SN-YO specimen.  相似文献   

3.
    
Si3N4 ceramic substrates serving as heat dissipater and supporting component are required to have excellent thermal and mechanical properties. To prepare Si3N4 with desirable properties, a novel two-step gas-pressure sintering route including a pre-sintering step followed by a high-temperature sintering step was devised. The effects of pre-sintering temperature (1500 – 1600 °C) on the phase transformation, microstructure, thermal and mechanical properties of the samples were studied. The pre-sintering temperature played an important role in adjusting the Si3N4 particles’ rearrangement and α→β transformation rate. Furthermore, the densification process for the Si3N4 ceramics prepared via the two-step gas-pressure sintering was revealed. After sintered at 1525 °C for 3 h followed by a high-temperature sintering at 1850 °C for another 3 h, the prepared Si3N4 compact with a bimodal microstructure presented the highest thermal conductivity and flexural strength of 79.42 W·m?1·K?1 and 801 MPa, respectively, which holds great application prospects as ceramic substrates.  相似文献   

4.
    
《Ceramics International》2022,48(5):6138-6147
Alumina ceramics was prepared by pressureless sintering technology in which a CuO–TiO2–Bi2O3 mixture (0–4.0 wt% Bi2O3 and 4.0 wt% CuO and TiO2) was added as dual liquid phase sintering aids. The phase compositions, microstructural feature, and sintering behaviour of the alumina ceramics were analyzed. The results showed that adding 2.5 wt% Bi2O3 to alumina ceramics can increase the contribution rate of initial stage of sintering to the sintering process. The relative density of the sample reached 97.63% after sintering at 1200 °C for 90 min. Measurements from differential scanning calorimetry, with the addition of CuO–TiO2–Bi2O3, demonstrated the formation of two liquid phase points, 827.4 and 936.8 °C. Notably, the solid solution temperature of TiO2 and Al2O3 ceramics diminished thanks to the dual liquid phase sintering aids, and at the same time the activation energy required also dropped from 368.96 to 137.31 kJ/mol. Research indicates that the combined action of dual liquid phase sintering and solid-state reaction sintering has promoted the densification of alumina ceramics during the sintering process while at the same time inhibiting the growth of abnormal grains so that a homogeneous microstructure can be formed.  相似文献   

5.
In this article we are reporting the optimization of gelcasting process which enabled us to manufacture silicon nitride bodies with around 30–37% porosity and 182–250?MPa flexural strength. Owing to their potential applications mainly in biomedical and aerospace, porous Si3N4 ceramics have gained ever increasing interests. However, the main challenge has been ensuring their high strength while maintaining high porosity. Si3N4 bodies were prepared via a controlled gelcasting followed by pressureless sintering in a coke bed. Monomers including acrylamide (AM) and N,N' -methylenebisacrylamide (MBAM) were employed to formulate the primary slurry. Sub-micron Si3N4 powder of 35?vol% was used as solid loading where ammonium persulfate (APS) and N,N,N',N' -tetramethylethylenediamine (TEMED) were added to initiate and catalyze polymerization reactions. Sintering was carried out at 1650?°C for 2–6?h and at 1750?°C for 2?h where 6?wt% mixture of Al2O3?Y2O3 was included as a sintering aid. Phase characterization and microstructural evolution were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively; while mechanical evaluation was based on bending test. It was found that by optimizing the viscosity of slurry and the idle time of gelation, a well distribution of high porosity structure is developed. The high strength of the sintered bodies is related to a high volume and unique microstructure of fine and elongated β- Si3N4 grains evolved during optimized sintering conditions. At temperatures above 1650?°C and sintering times of more than 4?h, the strength is decreased due to coarsening of β- Si3N4 grains, however.  相似文献   

6.
Guangyu Dong  W. Li 《Ceramics International》2021,47(14):19955-19958
The sintering behavior, microstructure and microwave dielectric properties of Al2O3 ceramics co-doped with 3000ppmCuO2+6000ppmTiO2+500ppmMgO (Cu/Ti/Mg) have been investigated. The results show that 1 wt% Cu/Ti/Mg can reduce the sintering temperature of Al2O3 ceramics effectively. Samples with relative densities of ≥97% and uniform microstructure can be obtained when sintered at 1150 °C. Higher temperature can further increase the density of the sample, but it inevitably leads to abnormal grain growth. Meanwhile, the investigation results show that the low-firing Al2O3 ceramics have good microwave dielectric properties especially high Q × f value. A high Q × f value of 109616 GHz is able to be obtained for the 1150 °C sintered sample. The reason for the low temperature densification, abnormal grain growth behavior and the changing trend of the microwave dielectric properties are discussed in the paper.  相似文献   

7.
《Ceramics International》2022,48(11):15282-15292
The Mo-based glass-free spinel-type structure of the (Na1-xKx)2MoO4 (x = 0.0, 0.1, and 0.2) ceramic series was prepared using the traditional solid-state method at the low sintering temperature (<650 °C). The microwave dielectric properties of the (Na1-xKx)2MoO4 series were determined in terms of phase compositions, crystal structure (via XRD), and microstructure analysis (via FE-SEM and EDS). The results revealed that the double-phase (cubic and orthorhombic) formation plays a significant role in the entire (Na1-xKx)2MoO4 series. It exhibits excellent dielectric properties: dielectric constant εr = 4 (1 GHz)/3.77 (15 GHz), tangent loss tan δ = 8.3 × 10?2 (1 GHz)/7 × 10?3 (15 GHz; Q × f = 2143 GHz), temperature coefficient of frequency (TCF) τf = ?6.45 ppm/°C, and room temperature thermal conductivity (κ) = 1.76 W/(m.K) for x = 0.1 at a sintering temperature of 575 °C. These make the (Na1-xKx)2MoO4 ceramic series a potential candidate for low-temperature co-fired ceramic (LTCC) substrate applications (as used in antennas) for high-speed data communications.  相似文献   

8.
《Ceramics International》2017,43(6):4785-4793
The quality of ceramics parts made by powder injection molding (PIM) method is influenced by a range of factors such as powder and binder characteristics, rheological behavior of feedstock, molding parameters and debinding and sintering conditions. In this study, to optimize the molding parameters, the effect of injection temperature and pressure on the properties of alumina ceramics in the LPIM process were thoroughly studied. Experimental tests were conducted on alumina feedstock with 60 vol% powder. Injection molding was carried out at temperatures and pressures of 70–100 °C and 0.1–0.6 MPa respectively. Results showed that increase in injection temperature and pressure and the resulting increase in flow rate leads to the formation of void which impairs the properties of molded parts. The SEM studies showed that injection at temperature of 100 °C results in evaporation of binder components. From the processing point of view, the temperature of 80 °C and pressure of 0.6 MPa seems to be the most suitable condition for injection molding. In addition, the effects of sintering conditions (temperature and time) on the microstructure and mechanical properties are discussed. The best final properties were found using injection molding under the above stated conditions, thermal debinding and sintering at 1700 °C during 3 h.  相似文献   

9.
    
Thermal insulation applications of porous SiC ceramics require low thermal conductivity and high mechanical strength. However, low thermal conductivity and high mechanical strength possess a trade-off relationship, because improving the mechanical strength requires decreasing the porosity, which increases the thermal conductivity. In this study, we established a new strategy for improving both the mechanical strengths and thermal resistances of porous SiC ceramics with micron-sized pores by applying a double-layer coating with successively decreasing pore sizes (submicron- and nano-sized pores). This resulted in a unique gradient pore structure. The double-layer coating increased the flexural strengths and decreased the thermal conductivities of the porous SiC ceramics by 24–70 % and 29–49 % depending on the porosity (48–62 %), improving both their mechanical strengths and thermal resistances. This strategy may be applicable to other porous ceramics for thermal insulation applications.  相似文献   

10.
A new type of non-oxide sintering additive of YH2 was introduced for the fabrication of AlN ceramics with high thermal conductivity and flexural strength. The effects of YH2 addition (0–5 wt%) on the phase composition, densification, microstructure, thermal conductivity and flexural strength of pressureless sintered AlN ceramics were investigated and compared with those Y2O3-added samples (1–5 wt%). The addition of 1 wt% YH2 led to an in-situ reduction reaction with oxygen impurities, the formation of Y2O3 and finally the formation of yttrium aluminate, which in turn improved densification and microstructure. A high flexural strength (408.69 ± 28.23 MPa) was achieved. The addition of 3 wt% YH2 increased the average grain size and purified the lattice. All these effects are believed to help achieve a high thermal conductivity of 184.82 ± 1.75 W·m?1·K?1. Although the thermal conductivity was close to the value of 3 wt% Y2O3-added sample, its strength was much increased to 381.53 ± 43.41 MPa. Meanwhile, it demonstrated a good combination of the thermal conductivity and flexural strength than the values reported in some literature. However, further increasing the YH2 addition to 5 wt% resulted in a high N/O ratio that inhibited the densification behavior of AlN ceramics. The current study showed that AlN ceramics with excellent thermal and mechanical properties could be obtained by the introduction of a suitable YH2 additive.  相似文献   

11.
AlN ceramics were sintered at a temperature range from 1650 to 1800°C through adding the Ca and Y nitrate sintering additives. Secondary phases, microstructures and properties of the AlN ceramics were studied. When the AlN ceramics are sintered at 1650 or 1675°C, CaO and Y2O3 from the sintering additives react with Al2O3 in the AlN powder to generate CaAl4O7 and Y3Al5O12. Part of Y3Al5O12 reacts with CaO and Al2O3 to form CaYAl3O7 at 1700°C. At 1800°C, CaYAl3O7 decomposes into CaAl4O7 and Y3Al5O12. Finally, CaAl4O7 volatilises and only Y3Al5O12 remains. As the sintering temperature increases, the AlN grains grow continuously and the bending strength and thermal conductivity of the AlN ceramics increase first and then decrease. The AlN ceramics sintered at 1700°C are fully dense and have the highest bending strength and thermal conductivity of 373·7 MPa and 136·7 W m?1 K?1 in this work.  相似文献   

12.
新型氧化铝耐磨材料   总被引:1,自引:0,他引:1  
沈毅 《陶瓷》2000,(5):7-9
以工业煅烧氧化铝为主要原料,通过同结构设计和各类掺杂物加入,使氧化铝试样在1500℃得到烧结。结果表明:掺杂物的复合加入有效地降低了氧化铝的烧结温度,抑制了晶粒生长,形成细晶结构,从而提高了材料耐磨性能。  相似文献   

13.
    
《Ceramics International》2017,43(7):5715-5722
In this study, we report the electrical conductivity and thermal properties of Al2O3-SiC-CNT hybrid nanocomposites processed via ball milling (BM) and spark plasma sintering (SPS). The initial powders and consolidated samples were characterized using transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM), respectively. A multifunction calibrator and a high-resolution digital multimeter were used to measure the electrical conductivity. The thermal properties were measured using a thermal constants analyser. The SiC and CNT-reinforced alumina hybrid nanocomposites exhibited a significant increase in their room-temperature electrical conductivity, which made them suitable for electrical discharge machining. The Al2O3-5SiC-2CNTs had a high electrical conductivity value of 8.85 S/m compared to a low value of 6.87×10−10 S/m for the monolithic alumina. The addition of SiC and CNTs to alumina decreased its room-temperature thermal properties. The increase in temperature resulted in a decrease in the thermal conductivity and thermal diffusivity but an increase in the specific heat of the monolithic alumina and the hybrid nanocomposites. These properties were correlated with the microstructure, and possible transport mechanisms were discussed.  相似文献   

14.
周新星 《江苏陶瓷》2012,45(4):20-22
文章综述了近二十多年来国内外氧化铝陶瓷低温烧结助剂体系的研究状况及未来可供研究的方向。  相似文献   

15.
    
《Ceramics International》2021,47(22):31536-31547
A low-temperature sintered porous SiC-based clay-Ni system with controlled electrical resistivity (2.54 × 1010 Ω cm to 2 Ω cm), and thermal conductivity (3.5 W/m. K to 12.6 W/m. K) was successfully designed. Clay (20 wt% kaolin) was used as a sintering additive in all the compositions. The electrical resistivity, and thermal conductivity was controlled by varying the Ni content (0–25 wt%) in the samples. The electrical resistivity was recorded as low as 2 Ω cm with 25 wt% Ni that was sintered at 1400 °C in argon. The interface reaction between Ni and SiC formed conductive nickel silicide (Ni2Si), while the transformation of kaolin to mullite strengthened the mechanical properties. Submicron-sized Ni (0.3 μm) was more effective than micron-sized Ni (3.5 μm) in reducing the electrical resistivity, and increasing the thermal conductivity along with flexural strength. A comparative study of sintering temperatures showed that 1400 °C resulted in the lowest electrical resistivity (2 Ω cm) and the highest thermal conductivity of 12.6 W/m. K with flexural strength of 54 MPa at 32% porosity in the SiC-kaolin-Ni system.  相似文献   

16.
《Ceramics International》2021,47(24):34199-34206
High flexural strength is an important mechanical property for a ceramic armor component to withstand high tensile stresses and protect its structural integrity against multiple hits. Also, larger fragments are required in fragmentation as larger fractured parts are harder to leave of the way for the penetrator and cause more abrasion and higher penetration resistance. In this study, the effect of different ZrO2 content (0, 0.5, 1, 3, 5, 10, 20 vol%) on the flexural strength of Al2O3–ZrO2 composites was investigated with relationship of the stored failure energy-crack length to evaluate the fragmentation behavior under possible impact conditions. Monotonic equibiaxial flexural strength test was used to measure the fracture strength. The highest strength was obtained for 20 vol% ZrO2 containing composite as 435 ± 78 MPa, ~ 24% increase in comparison with the pure Al2O3. The transformation of tetragonal to monoclinic phase occurred during the strength test in the 10 and 20 vol% ZrO2 content composites. 20 vol% ZrO2 containing composite had the smallest total crack length accompanying the largest fragment size for a given fracture energy among all the composites due to the stress-induced transformation of ZrO2 consumes energy that results in decreasing effective crack driving energy required for the crack branching.  相似文献   

17.
    
The additive composition of an AlN ceramic substrate material was optimized to achieve high strength and thermal conductivity. MgO-CaO-Al2O3-SiO2 (MCAS) glass and Y2O3 were used as basic additives for improved sintering properties and thermal conductivity, thereby allowing for AlN to be sintered at a relatively low temperature of 1600 °C without pressurization. Yttria-stabilized zirconia (YSZ) was added (0–3 wt%) to further improve the strength of the AlN ceramic. YSZ and Y2O3 reacted with AlN to produce ZrN, Y4Al2O9, and Y3Al5O12 secondary phases. The formation of these yttrium aluminate phases improved the thermal conductivity by removing oxygen impurities, while ZrN formed at the AlN grain boundaries provided resistance to grain boundary fractures for improved strength. Overall, the AlN ceramic with 1 wt% MCAS, 3 wt% Y2O3, and 1 wt% YSZ exhibited excellent thermal and mechanical properties, including a thermal conductivity of 109 W/mK and flexural strength of 608 MPa.  相似文献   

18.
《Ceramics International》2021,47(19):27545-27552
B2O3 and CuO were codoped into 6Nd[(Zn0.7Co0.3)0.5Ti0.5]O3–4(Na0.5Nd0.5)TiO3 (abbreviated as 6NZCT–4NNT) ceramics as sintering aids. The influences of the sintering aids on the sintering characteristics, microstructure and microwave dielectric properties of the 6NZCT–4NNT ceramics were systematically investigated as a function of the proportion of B2O3 and CuO. Codoping could greatly reduce the sintering temperature from 1410 °C to 1150 °C, indicating that B2O3/CuO are good sintering aids for 6NZCT–4NNT ceramics. The B2O3/CuO sintering aids had no significant impact on the phase purity of the investigated ceramics, even though a solid solution was formed due to Cu2+ ion substitution. However, they had evident influences on the surface morphology and grain size. The average grain size was enlarged with increasing amounts of CuO in the B2O3/CuO sintering aids. Remarkable deterioration of the microwave dielectric properties for 6NZCT-4NNT ceramics was not observed when codoping an appropriate amount of B2O3 and CuO. The 6NZCT–4NNT ceramics codoped with 2.0 mol% B2O3 and 2.0 mol% CuO sintered at 1150 °C for 3 h exhibited a homogeneous microstructure and promising microwave dielectric properties: an appropriate dielectric constant (εr = 49.37), a high quality factor (QF = 47,295 GHz), and a near-zero temperature coefficient of resonant frequency (TCF = +0.9 ppm/°C).  相似文献   

19.
    
A strategy for improving the specific stiffness of silicon carbide (SiC) ceramics by adding B4C was developed. The addition of B4C is effective because (1) the mass density of B4C is lower than that of SiC, (2) its Young’s modulus is higher than that of SiC, and (3) B4C is an effective additive for sintering SiC ceramics. Specifically, the specific stiffness of SiC ceramics increased from ~142 × 106 m2?s?2 to ~153 × 106 m2?s?2 when the B4C content was increased from 0.7 wt% to 25 wt%. The strength of the SiC ceramics was maximal with the incorporation of 10 wt% B4C (755 MPa), and the thermal conductivity decreased linearly from ~183 to ~81 W?m?1?K?1 when the B4C content was increased from 0.7 to 30 wt%. The flexural strength and thermal conductivity of the developed SiC ceramic containing 25 wt% B4C were ~690 MPa and ~95 W?m?1?K?1, respectively.  相似文献   

20.
High density uranium dioxide (UO2) pellets with grain sizes between 0.9 μm and 9 μm were produced by spark plasma sintering (SPS). A systematic study was performed by varying the sintering temperature between 750 °C and 1450 °C and hold time between 0.5 min and 20 min to obtain UO2 pellets with a range of theoretical densities (TD) and grain sizes. The microstructure development in terms of grain size, density and porosity distribution was investigated. The oxygen/uranium (O/U) ratio of the resulting pellets was found to decrease after SPS. The thermal conductivity of UO2 pellets increased with the theoretical density but the grain size in the investigated range had no significant influence. The measured thermal conductivity values up to 900 °C were consistent with the reported literature for conventionally sintered UO2 pellets. The benefits of using SPS over the conventional sintering of UO2 are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号