首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用超音速火焰喷涂(HVOF)工艺在35钢基体上制备了WC-10Ni涂层和WC-12Co涂层,研究了镍、钴这两种粘结剂对WC涂层的显微硬度、摩擦系数和抗磨粒磨损性能的影响,采用扫描电子显微镜观察涂层磨损前后的表面形貌,探讨了WC涂层的磨粒磨损机理。结果表明,以HVOF方法制备的2种WC涂层均有较高的显微硬度,WC-10Ni涂层和WC-12Co涂层与SiC砂纸摩擦副之间的干摩擦系数相差不大。2种涂层在低载荷下均有较好的抗磨粒磨损性能,但在较高载荷下WC-12Co涂层的抗磨性明显优于WC-10Ni涂层。2种涂层的磨粒磨损形式主要为均匀磨耗磨损,磨损机理以微切削和微剥落为主。WC-12Co涂层的磨损表面损伤较轻微,综合性能优于WC-10Ni涂层。  相似文献   

2.
《Ceramics International》2017,43(2):2123-2135
In this research, the nanostructured WC-17NiCr cermet coatings were developed using the high velocity oxy-fuel (HVOF) thermal spraying processes on ACI CD4MCu cast duplex stainless steel substrates, widely used in pump industry for abrasive wear protection of surfaces. The coatings, sprayed by both robotic and manual methods, had two different fuel (methane) to oxygen ratios (FTOR), namely 0.68 and 0.62. Using different analytical and microstructural techniques, the microstructural characteristics of the powder particles and mechanical, microstructural, and tribological properties of the coatings were determined. Different morphologies were assigned to sprayable particles, namely spherical, apple, donut, irregular, and mixed. It was revealed that the rate of WC decarburization had increased with increasing the FTOR. In contrast, the scanning electron microscopy and image analyses showed that the lowest porosity percentage was obtained for the robotically-sprayed coating with 0.68 FTOR. The Vickers microhardness increased along with fracture toughness, which can be attributed to the effect of the ‘duplex structure’ associated with the particle outer coating of Co and is a novelty in the research. The pin-on-disk reciprocal sliding wear tests at various loadings had shown different wear rates in the coatings. It was inferred that the wear performance was improved with the microstructural homogeneity, hardness, and the fracture toughness in the coatings. In all coatings, lower coefficient of friction (COF) was observed at higher loads. Finally, the wear mechanisms involved in the wear processes were identified as deformation and removal of the binder, fracture and pullout of the carbide particles, and delamination and spallation of the splats.  相似文献   

3.
Ceramic coatings were obtained by micro-arc oxidation (MAO) on the surface of AA1060 pure aluminum in alkaline silicate electrolyte with the addition of graphene. The effects of graphene contents in the range of 0–.30 g/L in the electrolyte on surface morphology, corrosion resistance, and wear resistance of the ceramic coatings were investigated. The outer surface structure, outer surface element content, coating cross-section structure, coating cross-section element content, coating/substrate interface structure, and coating phase were characterized by scanning electron microscope and X-ray diffraction. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to evaluate the corrosion behavior of MAO samples in a 3.5-wt% NaCl solution. In addition, the resistance to sliding and abrasive wear of the oxide coating were studied experimentally. The results show that the alkaline silicate electrolyte with the addition of graphene has a significant effect on the characteristics of MAO coating. The performance of micro-arc oxide coatings is best when the graphene content in the electrolyte is .15 g/L, the average thickness of the film is 7.24 μm, the average pore size is 6.07 μm, the impedance value is approximately 4.01 × 106 Ω, and its friction coefficient is .55.  相似文献   

4.
《Ceramics International》2020,46(4):4526-4531
To investigate tribological behavior of graphene reinforced chemically bonded ceramic coatings at different temperatures, tribological tests at room temperature, 200 °C and 500 °C were carried out. Results show that the fracture toughness and the hardness of the coating are improved with the introduction of graphene. Besides, the friction coefficient of the coating decreases with the addition of graphene at the room temperature and 200 °C. The coating without graphene achieves the similar friction coefficient at all temperatures. However, the coating with graphene achieves the lowest friction coefficient at 200 °C, and achieves the highest at 500 °C. In addition, the wear rate of the coating decreases with the increase of graphene. Besides, the wear rate at 200 °C is almost similar with that at room temperature. In contrast, the wear rate at 500 °C is much larger than those at room temperature and 200 °C. The mechanisms for graphene to decrease the friction coefficient and improve the wear resistance of chemically bonded ceramic coatings at evaluated temperatures are clarified.  相似文献   

5.
Carbon/aramid fabric composite coatings modified with boron nitride of single layer were fabricated through a dip-coating method. The composite coatings were cured with successive heating processes in an oven. The friction and wear properties of those as-prepared coatings were studied on a block-on-ring tester. The obtained results showed that the wear life of the coatings increased obviously after inclusion of boron nitride of single layer; however, the values of friction coefficients of the coatings almost remained constant. The optimal loadings of boron nitride of single layer in our experiments was 5 wt.%, and the wear life of the modified coating increased by ca. 360% compared with that of pristine fabric composite coating. The worn morphology of the sliding surface for both pristine fabric coating and the composite coatings filled with boron nitride of single layer was discussed, and the wear mechanisms were illuminated.  相似文献   

6.
《Ceramics International》2022,48(7):9218-9228
To improve microhardness and tribological properties of IN718, WC-12Co particles were added to it by the laser cladding. This study investigated the effect of the content of WC-12Co on the microstructure, phase composition, microhardness, tribological properties and machinability of the composite coating. The results shows that WC-12Co can inhibit the growth of columnar grains and the (200) growth direction of γ-Ni, and refine the microstructure. The average microhardness of coating increases from 245.83HV0.5 to 462.63HV0.5 with the increase of WC-12Co content. The coating containing 30% wt. WC-12Co has the smallest wear loss, that is, the best wear resistance. However, the coating containing 20 wt% WC-12Co has the lowest COF (0.518), that is, the best antifriction capability. With the increase of WC-12Co content, the milling force increases and the instability of the cutting process is aggravated. Moreover, with the addition of WC-12Co, the wear mechanism changed from adhesive wear to abrasive wear and oxidation wear.  相似文献   

7.
In this study, the effects of simultaneous co-deposition of polytetrafluoroethylene (PTFE) and MoS2 particles on tribological properties of electroless nickel (EN) coating were studied. The influences of specimen orientation and heat treatment on EN-PTFE-MoS2 composite coatings were also investigated. Scanning electron microscopy was used to study the morphology of coatings and the distributions of the lubricant particles in the deposits. Chemical analyses of coatings were done by electron dispersive spectrometry. The phases of the coatings were identified by X-ray diffraction utilizing CuKα radiation. Wear and friction properties of the coatings were also determined by pin-on-disk wear tester. The wear investigations showed that the EN-PTFE-MoS2 composite coating performs better than EN-PTFE and EN-MoS2 coatings in terms of friction coefficient and wear resistance. PTFE and MoS2 contents of the EN-PTFE-MoS2 coating were increased by changing the specimen orientation from vertical to horizontal configuration, which leads to enhancement in tribological properties of the coating. After heat treatment, the wear rate of EN matrix composite coating decreased with corresponding change in phase structure.  相似文献   

8.
Application and tribological properties of graphene oxide (GO) monolayer sheets as additives in water-based lubricants were investigated. The lubricating fluids were applied to a sintered tungsten carbide ball and stainless steel flat plate. It was found that adding GO particles into water improved lubrication and provided a very low friction coefficient of approximately 0.05 with no obvious surface wear after 60,000 cycles of friction testing. GO adsorption occurred on the lubricated surfaces of both the ball and flat plate, suggesting GO sheets may behave as protective coatings.  相似文献   

9.
W.X Chen  L.Y Wang  Z.D Xu 《Carbon》2003,41(2):215-222
Ni-P-carbon nanotube (CNT) composite coating and carbon nanotube/copper matrix composites were prepared by electroless plating and powder metallurgy techniques, respectively. The effects of CNTs on the tribological properties of these composites were evaluated. The results demonstrated that the Ni-P-CNT electroless composite coating exhibited higher wear resistance and lower friction coefficient than Ni-P-SiC and Ni-P-graphite composite coatings. After annealing at 673 K for 2 h, the wear resistance of the Ni-P-CNT composite coating was improved. Carbon nanotube/copper matrix composites revealed a lower wear rate and friction coefficient compared with pure copper, and their wear rates and friction coefficients showed a decreasing trend with increasing volume fraction of CNTs within the range from 0 to 12 vol.% due to the effects of the reinforcement and reduced friction of CNTs. The favorable effects of CNTs on the tribological properties are attributed to improved mechanical properties and unique topological structure of the hollow nanotubes.  相似文献   

10.
采用等离子弧喷焊技术在Q235表面制备未添加与分别添加1wt%, 3wt%和5wt%纳米Nb粉的铁基合金喷焊层。通过X射线衍射仪(XRD)、金相显微镜(OM)、扫描电镜(SEM)和能谱仪(EDS)对喷焊层的相组成、显微组织、微区成分及磨损形貌进行分析;利用维氏硬度仪和销盘磨损仪检测喷焊层截面硬度和表面耐磨性。结果表明,铁基喷焊层主要由α-Fe, γ-Fe和Cr7C3组成,添加纳米Nb粉后原位生成NbC相,且随Nb含量增至5wt%,出现了Cr23C6相。纳米Nb粉的加入使喷焊层组织中未转变的奥氏体增多,组织形貌由近等轴晶转变为树枝晶,并且添加5wt%纳米Nb粉的喷焊层组织发生明显细化。添加纳米Nb粉使喷焊层的硬度明显提高,其中添加1wt%和3wt%纳米Nb粉的喷焊层硬度均可达约766 HV0.3。纳米Nb粉的加入同时提高了喷焊层的耐磨性,磨损机制由黏着磨损变为磨粒磨损。  相似文献   

11.
Mechanical and tribological properties of nanocomposites with silicon nitride matrix with addition of 1 and 3 wt% of various types of graphene platelets were studied. The wear behavior was observed by means of the ball-on-disk technique with a silicon nitride ball used as the tribological counterpart at room temperature in dry sliding. Coefficient of friction and specific wear rates were calculated and related to the damage mechanisms observed in the wear tracks. The measured properties were then assessed with respect to the type and volume fraction of the graphene additives. It is shown that addition of such amounts of carbon phases does not lower the coefficient of friction. Graphene platelets seem to be integrated into the matrix very strongly and they do not participate in lubricating processes. The best performance offers materials with 3 wt% of larger sized graphene, which have the highest wear resistance.  相似文献   

12.
In this work, the combinations of TiAl-doped DLC (Diamond-like Carbon) and TiAlN/TiN double-layered films were designed to deposit on the tool steels using cathodic arc evaporation in a single process. The economic advantage in depositing the combined coating in one production scale PVD coating system is of practical importance. The TiAl-doped DLC as lubricant coatings were synthesized with TiAl-target arc sources to emit ion plasma to activate acetylene reactive gases. Scanning electron microscopy (SEM), Auger electron spectroscopy (AES), micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) techniques were employed to analysis the microstructure properties of TiAl-doped DLC coatings. Vicker's and tribometer tester were used to measure the mechanical properties of TiAl-doped DLC coatings. The results show that the TiAl-doped DLC coatings retained lower friction coefficient at approximately 0.15 during the steady state sliding. The lubricity and wear resistance of TiAl-doped DLC coatings is then demonstrated to potentially be applied to the cutting tools with no lubricants.  相似文献   

13.
After multi-walled carbon nanotubes (MWNTs) were modified and dispersed uniformly in electrolyte, the MWNTs composite coatings were prepared by electroless deposition. Hardness tests were carried out using a Vickers Hardness indenter. The friction and wear behavior of the Ni–P–MWNTs composite coatings in carbon-steel rings were investigated by using a ring-on-plate wear tester at pure liquid paraffin. Moreover, the friction and wear behavior of nine kinds of wear combinations, which were composed of plates and rings of different composite coatings, were studied. The experimental results indicated that addition of MWNTs would result in an increase in microhardness and an improvement of tribological properties of the Ni–P composite coating significantly. The Ni–P–MWNTs composite coatings revealed lower wear rate and friction coefficient compared with Si–C composite coatings. Moreover, the wear combination, which composed of the Ni–P–MWNTs composite coatings, showed a more excellent ability of friction-reduction and wear resistance than other combinations, and their friction coefficient and wear rate were 0.1087 and 1.49 × 10 6 kg/m, respectively.  相似文献   

14.
The CrCN coatings have been prepared by multi-arc ion plating technology with different bias voltages on 316?L, TC4 and H65 substrates, respectively. The prepared CrCN coatings have been characterized by XRD, SEM, and EDS, respectively. The mechanical properties, electrochemical corrosion behavior, and tribological performance of prepared coatings were tested by microhardness tester, scratch tester, electrochemical workstation, and friction and wear tester, respectively. Results show that the CrCN coatings with bias voltage of ?50?V presented the finer grain size, denser structure, better comprehensive mechanical properties and friction, and better corrosion resistance than the CrCN coatings with a bias voltage of ?30?V. The coating on TC4 substrate show the lower hardness, the better adhesion, the better electrochemical properties and tribological properties than that on 316?L substrate. The coatings based on H65 Cu substrate presented the worst electrochemical and wear properties. The CrCN coating with a bias voltage of ?50?V on TC4 substrate is an optimal candidate in artificial seawater for tribocorrosion.  相似文献   

15.
采用种子微悬浮聚合法制备了聚苯乙烯/氧化石墨烯复合囊壁包覆硬脂酸丁酯微胶囊润滑材料(MGO–Micro LMs),以MGO–Micro LMs为润滑填料,环氧树脂(EP)为基体材料,采用浇注成型工艺制备了EP/MGO–Micro LMs复合材料。采用滑动摩擦磨损试验仪评价了MGO–Micro LMs对EP基体材料摩擦学性能的影响;采用扫描电子显微镜对磨损面的微观形貌进行表征,并探究了其磨损机理。结果表明,MGO–Micro LMs能够显著地降低EP的摩擦系数和磨损量,当MGO–Micro LMs质量分数为20%时,EP/MGO–Micro LMs复合材料的摩擦系数为0.138 44,磨损量减少了约42.3%,磨损机理主要为磨粒磨损。  相似文献   

16.
HVOF sprayed WC based cermet coatings have been widely used in industries as barriers against wear and hydrodynamic cavitation due to their high hardness and relatively high toughness. However, cracking of the coatings can occur during coating production or in service, which can reduce operational performances. It can be difficult to assess the performance impact due to cracks within the coating and as to whether the cracked coatings should be resprayed or removed from service. In this work, artificial cracks of different widths were introduced to liquid fuel HVOF sprayed WC-12Co coating through uniaxial tension of the coated steel substrate to assess the implications of such cracking. Tribological performances of the cracked coatings were examined using rubber wheel dry abrasion, ‘ball on disc’ sliding wear, and ultrasonic cavitation erosion. The results show that the crack deteriorates the abrasive wear resistance of the coating at the initial stage due to preferable mass loss at the cracks. However, after 30?min of abrasion, all the cracked coatings showed the same wear rate as compared to the non-cracked coating, with the abrasive wear resistance acting independent to the crack characteristics. Because the cracks could store wear debris and thus minimize the debris induced abrasion to the coating surface during sliding wear test, both improvement in wear resistance and reduction in coefficient of friction (COF) were detected in the cracked coatings. During the cavitation test, it was found that the mass loss of the specimen increased significantly (up to 75%)with crack width and density suggesting that the crack presence greatly deteriorated the cavitation resistance of the cermet coatings.  相似文献   

17.
The corrosion and wear behavior of powder coatings fabricated by the electrostatic method was investigated in this study. Pure polyester coating and fabricated nanocomposite powder coating with 10 and 20 mass.% alumina nanoparticles were coated with electrostatic spraying method on the surfaces of carbon steel substrate. Coatings were cured in two regimes by oven and microwave for the appropriate time. The effects of alumina nanoparticles on the corrosion resistance of coated samples were studied by immersion and electrochemical impedance spectroscopy (EIS) tests. Also, pin‐on‐disk test was applied to evaluate the wear properties and coefficient of friction (COF) of the coatings. The results of the corrosion test reveal that the samples with 10 mass.% alumina show the best corrosion resistance and cause a reduction in corrosion rates which is about 36 times to that of the pure sample. The wear rate of nanocomposite coatings is 10 times lower than that of pure ones and also the coefficient of friction of nanocomposite samples is almost half of the pure samples. Furthermore, the nanocomposite coatings cured in the microwave show better protection properties and wear resistance than that of ones cured in an oven. POLYM. ENG. SCI., 57:846–856, 2017. © 2016 Society of Plastics Engineers  相似文献   

18.
《Ceramics International》2020,46(8):11933-11942
The use of a powder mixed dielectric is one of the promising measures to overcome defects such as non-uniform thickness, voids and micro-cracks of hard coatings obtained via the electrical discharge coating (EDC) process. The quest for finding appropriate powders suspended in EDC dielectric still continues. In this paper, reduced graphene oxide nanosheets (RGONS) are explored as the additives of EDC dielectric to fabricate TiC containing composite coatings with superior tribological performance. The influences of RGONS on the surface integrity, microstructure and tribological performance of the as-prepared coatings are investigated. RGONS with lipophilic modification effectively reduce spark energy and disperse the discharges throughout the machined surface due to their uniform dispersion in the discharge gap. This allows the formation of compact coatings with banded microstructure composing of a mixture of equiaxed and columnar TiC grains within the martensite matrix. Such unique microstructure improves the as-prepared coatings’ resistance to adhesion and abrasion wear, as well as fatigue and fracture. As a result, they show obviously lower coefficient of friction and wear rate compared to the coatings obtained using a bare dielectric.  相似文献   

19.
In this research both low temperature high velocity oxygen-fuel flame (LT-HVOF) and high velocity oxygen-fuel flame (HVOF) techniques were employed to prepare WC-10Co4Cr splats and coatings. In situ cutting of WC-10Co-4Cr splats was carried out with focused ion beam (FIB), and a model was proposed to describe how the wear resistance of WC-10Co4Cr coatings was correlated with its residual stress state and the splats deposition state. It was observed that in LT-HVOF spraying process, WC-10Co4Cr splats were slightly melted showing "hill" shape, while in HVOF spraying process, the splats were half melted having the appearance of "concavity". The residual stress of WC-10Co4Cr coatings is determined by the size, melting state, flight speed and temperature gradient of splats. In this paper, the quantitative function formula involving heating temperature and the flight speed of the powder is put forward for the first time to predict the wear resistance of the WC-10Co4Cr coatings. This will provide a theoretical basis for engineering practice and an effective way to save costs.  相似文献   

20.
In the present study, graphene nanoplatelets (GNPs: 1–2 wt. %) reinforced TiN coating were successfully fabricated over titanium alloy using a reactive shroud plasma spraying technique. All coatings were completely oxide free, while the addition of GNPs suppressed the non-stoichiometric TiN0.3 phase. Improvement of 19%, 18% and 300% in hardness, elastic modulus and fracture toughness was achieved by mere addition of 2 wt. % GNP. The addition of GNP in TiN also reduced the wear volume loss and the wear rate of the coatings for the entire range of temperature (293–873 K). Moreover, GNPs also manifested the coefficient of friction (COF) of the coating. Post wear characterization revealed that the presence of GNP throughout the wear track even at 873 K. The multi-layer structure of GNPs assisted in long term lubricity to the surface and increased the wear resistance of the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号