首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(24):34721-34731
A series of Sr9Y(PO4)7:Eu3+ and Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphors were prepared via a high-temperature solid-state method, Gd3+ ion was co-doped in Sr9Y(PO4)7:Eu3+ as sensitizer to enhance the luminescence property. The X-ray diffraction results verify that the structure of the as-prepared samples is consistent with the standard Sr9Y(PO4)7 phase. All the Sr9Y(PO4)7:Eu3+ samples show both characteristic emission peaks at 594 nm and 614 nm under near-ultraviolet excitation of 394 nm. The co-doping of Gd3+ significantly improves the luminescence intensity of the Sr9Y(PO4)7:Eu3+ phosphors due to the crystal field environment effect and energy transfer of Gd3+→Eu3+ caused by the introduction of Gd3+, especially Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+, which emission intensity is higher than that of Sr9Y(PO4)7:0.11Eu3+ by 1.21 times. The color purity and lifetime of Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+ phosphor are 88.26% and 3.7615 ms, respectively. A w-LED device was packaged via coating the as-prepared phosphor on n-UV chip of 395 nm with commercial phosphors. These results exhibit that the Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphor can be used as a red component in the w-LEDs application.  相似文献   

2.
A series of novel red emission phosphors Sr3Lu1-x(VO4)3:xEu3+(= 0.007, 0.009, 0.02, 0.04, 0.06) were synthesized successfully by traditional high-temperature solid-state reaction. The results of X-ray diffraction (XRD) reveal the doped Eu3+ ions have replaced the lattice sites of Lu3+ ions. The diffuse reflectance spectra illustrate the energy gap of Sr3Lu(VO4)3 host is 3.61 eV. The room-temperature steady-state fluorescence spectra show that these phosphors can be effectively pumped by the charge-transfer band (CTB) of the host in near ultraviolet (NUV) spectral region and then produce strong and pure red emission at 615 nm originated from 5D0 → 7F2 electric dipole transition of Eu3+. The Commission Internationale de L’Eclairage (CIE) coordinates of Sr3Lu0.96(VO4)3:0.04Eu3+ are (x = 0.65, y = 0.35), which are very close to the red standard of National Television Standards Committee NTSC (0.67, 0.33). The fabricated warm white-light-emitting diodes (LED) demonstrate high color-rendering index Ra as 93. The results imply the red-emitting Sr3Lu(VO4)3:Eu3+ phosphors could be potentially utilized in the fields of solid-state lighting.  相似文献   

3.
《Ceramics International》2017,43(12):8824-8830
A series of Eu2+ and Mn2+ co-doping Sr3GdLi(PO4)3F phosphors have been synthesized through high temperature solid state reaction. Eu2+ single doped Sr3GdLi(PO4)3F phosphors have an efficient excitation in the range of 230–430 nm, which is in good agreement with the commercial near-ultraviolet (n-UV) LED chips, and gives intense blue emission centering at 445 nm. The critical distance of the Eu2+ ions in Sr3GdLi(PO4)3F is computed and demonstrated that the concentration quenching mechanism of Eu2+ is mostly caused by the dipole-dipole interaction. By co-doping Eu2+ and Mn2+ ions in the Sr3GdLi(PO4)3F host, the energy transfer from Eu2+ to Mn2+ that can be discovered. With the increase of Mn2+ content, emission color can be adjusted from blue to white under excitation of 380 nm, corresponding to chromatic coordinates change from (0.189, 0.108) to (0.319, 0.277). The energy transfer from Eu2+ to Mn2+ ions is proven to be a dipole-dipole mechanism on the basis of the experimental results and analysis of photoluminescence spectra and decay curves. This study infers that the obtained Sr3GdLi(PO4)3F:Eu2+, Mn2+ phosphors may be a potential candidate for n-UV LEDs.  相似文献   

4.
《Ceramics International》2022,48(2):1814-1819
Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ (x = 0, 0.2, 0.4) long persistent phosphors were prepared via solid-state process. The pristine Sr3Al2O5Cl2:Eu2+, Dy3+ phosphor exhibits orange/red broad band emission around 609 nm, which can be attributed to the electric radiation transitions 4f65 d1→4f7 of Eu2+. Upon the same excitation, the B3+-doped Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphors display red-shift from 609 nm to 625 nm with increasing B3+ concentrations. The XRD patterns show that Al3+ can be replaced by B3+ in the host lattice at the tetrahedral site, which causes lattice contraction and crystal field enhancement, and thereafter achieves the red-shift on the emission spectrum. The XPS investigation provides direct evidence of the dominant 2-valent europium in the phosphor, which can be ascribed for the broad band emission of the prepared phosphors. The afterglow of all phosphors show standard double exponential decay behavior, and the afterglow of Sr3Al2O5Cl2:Eu2+, Dy3+is rather weak, while the sample co-doped with B3+shows longer and stronger afterglow, as confirmed after the curve simulation. The analysis of thermally stimulated luminescence showed that, when B3+ is introduced, a much deeper trap is created, and the density of the electron trap is also significantly increased. As a result, B3+ ions caused redshift and enhanced afterglow for the Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphor.  相似文献   

5.
A series of red-emitting phosphors Eu3+-doped Sr3Y(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Y(PO4)3:Eu3+ phosphors exhibit peaks associated with the 5D0  7FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The integral intensity of the emission spectra of Sr3Y0.94(PO4)3:0.06Eu3+ phosphors excited at 392 nm is about 3.4 times higher than that of Y2O3:Eu3+ commercial red phosphor. The Commission Internationale de l’Eclairage chromaticity coordinates, the quantum efficiencies and decay times of the phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Y(PO4)3 phosphors are promising red-emitting phosphors pumped by near-UV light.  相似文献   

6.
《Ceramics International》2017,43(15):12044-12056
Perovskite type titanate phosphors Sr0.97−xDy0.03LixTi1−xNbxO3, Sr0.9−xDyxLi0.1Ti0.9Nb0.1O3 and Sr0.87−yDy0.03EuyLi0.1Ti0.9Nb0.1O3 were prepared by conventional solid state method. Herein, white light emission from Sr0.9−xDyxLi0.1Ti0.9Nb0.1O3 phosphors and the lowering of its color temperature through codoping with Eu3+ ions are reported. Raman measurements have shown that the incorporation of dopants alters the vibrational properties of these phosphors significantly, indicating the reduction of the local symmetry in the crystal lattice. The addition of LiNbO3 in SrTiO3:Dy3+ phosphor enhances the luminescence intensity and the yellow to blue ratio resulting in emission of high quality white light with color coordinates corresponding to that of standard white. Life time measurements and data fits of Sr0.9−xDyxLi0.1Ti0.9Nb0.1O3 phosphors revealed the biexponential behaviour of luminescence decay profiles. From Judd-Ofelt analysis it is found that the intensity parameter Ω2 increases with Dy3+ concentration and a quantum efficiency of 90.4% was obtained for optimum concentration. In the case of Dy3+ and Eu3+ codoped phosphors, the color coordinates are found to be sensitive to the Eu3+ concentration and the highest energy transfer efficiency of 92% was obtained for the phosphor doped with 10 mol% Eu3+. The emission color changes from cold white to reddish orange when the wavelength of excitation alters from 452 to 388 nm, since the energy transfer mechanism alone take place under 452 nm excitation and both direct absorption and the energy transfer mechanism occurs under 388 nm excitation.  相似文献   

7.
《Ceramics International》2016,42(12):13919-13924
A series of green-to-red color-tunable Sr3La(PO4)3:Tb3+, Eu3+ phosphors were prepared by high temperature solid-state method. The crystal structures, photoluminescence properties, fluorescence lifetimes, and energy transfer of Sr3La(PO4)3:Tb3+, Eu3+ were systematically investigated in detail. The obtained phosphors show both a green emission from Tb3+ and a red emission from Eu3+ with considerable intensity under ultraviolet (UV) excitation (~377 nm). The emission colors of the phosphors can be tuned from green (0.304, 0.589) through yellow (0.401, 0.505) and eventually to red (0.557, 0.392) due to efficient Tb3+-Eu3+ energy transfer (ET). The Tb3+→Eu3+ energy transfer process was demonstrated to be quadrupole-quadrupole mechanism by Inokuti-Hirayama model, with maximum ET efficiency of 86.3%. The results indicate that the Sr3La(PO4)3:Tb3+, Eu3+ phosphors might find potential applications in the field of lighting and displays.  相似文献   

8.
Sr2GdAlO5:Ce and Sr3AlO4F:Ce are isostructural phosphors in which the Ce3+ 4f-5d1 transition can be efficiently excited by a photon with energy lower than 3.1 eV. Herein, we analyze the crystal chemistry of the Ce3+ local coordination, compare the thermal quenching behavior and construct the electronic structure of Ce3+ in them. The Rietveld refinement on two occupancy models suggests that Gd3+ only occupies the 8h site in Sr2GdAlO5; this provides a hint on the preferred occupancy of dopant Ce3+ in this site. The large crystal filed splitting of Ce8h is mainly due to the fact that the 8h site is bonded to two oxygen with relatively short dSr/Gd-O and forms a quasi-square antiprism which experiences a large distortion. The Ce3+ 5d-4f luminescence in Sr3AlO4F is much more stable against thermal quenching than that in Sr2GdAlO5, as evidenced by the temperature-dependent luminescence intensity and luminescence decay studies. The energy of the O2−-Eu3+/2+ and O2−-Ce4+/3+ charge transfer as well as bandgap were estimated and the electronic structure of Ce3+ were constructed. A larger energy barrier ΔEdC between the Ce3+ 5d1 level and the conduction band bottom in Sr3AlO4F is seen from the Vacuum Referred Binding Energy (VRBE) diagrams which explains the higher thermal quenching temperature by thermal ionization model.  相似文献   

9.
In this study, a series of red-emitting Ca3Sr3(VO4)4:Eu3+ phosphors co-doped with La3+ was prepared using the combustion method. The microstructures, morphologies, and photoluminescence properties of the phosphors were investigated. All Ca3Sr3(VO4)4:Eu3+, La3+ samples synthesized at temperatures greater than 700 ℃ exhibited the same standard rhombohedral structure of Ca3Sr3(VO4)4. Furthermore, the Ca3Sr3(VO4)4:Eu3+, La3+ phosphor was effectively excited by near-ultraviolet light of 393 nm and blue light of 464 nm. The strong excitation peak at 464 nm corresponded to the 7F05D2 electron transition of Eu3+. The strong emission peak observed at 619 nm corresponded to the 5D07F2 electron transition of Eu3+. Co-doping with La3+ significantly improved the emission intensity of Ca3Sr3(VO4)4:Eu3+ red phosphors. The optimum luminescence of the phosphor was observed at Eu3+ and La3+ concentrations of 5% and 6%, respectively. Moreover, co-doping with La3+ also improved the fluorescence lifetime and thermal stability of the Ca3Sr3(VO4)4:Eu3+ phosphor. The CIE chromaticity coordinate of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ was closer to the NTSC standard for red phosphors than those of other commercial phosphors; moreover, it had greater color purity than that of all the samples tested. The red emission intensity of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ at 619 nm was ~1.53 times that of Ca3Sr3(VO4)4:0.05Eu3+ and 2.63 times that of SrS:Eu2+. The introduction of charge compensators could further increase the emission intensity of Ca3Sr3(VO4)4:Eu3+, La3+ red phosphors. The phosphors synthesized herein are promising red-emitting phosphors for applications in white light-emitting diodes under irradiation by blue chips.  相似文献   

10.
《Ceramics International》2020,46(1):560-567
The synthesis and photo-luminescence properties of Eu2+/Eu3+ or Ce3+/Eu3+ co-doped Sr5(BO3)3F compounds are reported. Using the Sr5(BO3)3F as the host, through the solid state reaction under the reductive atmosphere, Eu2+/Eu3+ and Ce3+/Eu3+co-doped samples were prepared. These compounds exhibit good photo-luminescence properties. Under the excitation of 376 nm, an unusual red orange emission coming from the Eu2+ ions can be obtained in Eu ions doped Sr5(BO3)3F, which exhibits a broadband emission in the range of 450–800 nm with the peak at around 600 nm. At the same time, the characteristic f-f excitation and emission of Eu3+ can improve and adjust the Eu2+ emission in Eu3+/Eu2+ codoped Sr5(BO3)3F. In addition, the adjustable luminescence properties from blue to white of Sr5(BO3)3F:Ce3+, Eu3+ are investigated. The energy transfer behavior from Ce3+ to Eu3+ was confirmed. In the spectra of the co-doped samples, we can hardly observe the characteristic peak of Eu2+, because Ce4+ can oxidize Eu2+ to Eu3+, and Ce4+ itself is reduced to Ce3+. The CIE coordinates from (0.2758, 0.2420) to (0.3857, 0.3015) show Sr5(BO3)3F:3%Ce3+, x%Eu3+ (x = 1,3,5,7,9) are in the white light emission region. All results demonstrate that the Sr5(BO3)3F:Eu3+/Eu2+ and Sr5(BO3)3F:Ce3+/Eu3+ phosphors have good application prospects for LED plant growth and white LED, respectively. The bond energy method was used to explain the reason why the Eu2+/Eu3+ ion instead of only Eu2+ and Ce3+/Eu3+ instead of Ce3+/Eu3+/Eu2+ can exist in the host Sr5(BO3)3F. The theoretical analysis agree well with the experimental result.  相似文献   

11.
A modified chemical vapor deposition (CVD) technique is used to synthesize the color‐tunable siliconitride Sr2‐1.5x‐yCexEuySi5N8 (x = 0.000‐0.016 and y = 0.000‐0.020) phosphors. In comparison with the conventional solid‐state method, the CVD approach successfully improved the crystallinity, particle size distribution, and photoluminescence through the enhanced gas‐solid reaction. Under blue excitation, Sr1.98Eu0.02Si5N8 exhibited a red emission band at 618 nm. The incorporation of Ce3+ ions increased the emission intensity of Eu2+ ions by approximately 10% owing to the enhanced absorption and dipole‐dipole energy transfer process from Ce3+ to Eu2+ ions. It resulted in a shift of the emission colors from yellow to red region. The external and internal quantum efficiencies of Sr1.906Ce0.06Eu0.004Si5N8 were calculated as 54% and 70%, respectively. The activation energy of thermal stability for Sr1.906Ce0.06Eu0.004Si5N8 was evaluated as 0.31 eV. A white LED with a color rendering index of 80 and a CCT of 4964 K was successfully fabricated with the present phosphors. The current research demonstrated a new series of Sr2Si5N8:Ce3+, Eu2+ phosphors with color‐tunability for fabricating white LEDs with high color‐rendering index.  相似文献   

12.
《Ceramics International》2021,47(24):34323-34332
Eu3+-activated Sr3−xCaxLa(VO4)3 phosphors were fabricated via citric-acid-assisted sol combustion. Characterization of the Sr3−xCaxLa(VO4)3:Eu3+ samples with different concentrations of Ca2+ revealed a hexagonal crystal structure belonging to the R-3m space group. The amount of Ca2+ added (x) was controlled within 0 ≤ x ≤ 2 to yield high-purity phosphors. Scanning electron microscopy results showed that an increase in Ca2+ concentration resulted in a decrease in the particle size of Sr3−xCaxLa(VO4)3:Eu3+, with the shape gradually changing from nearly equiaxed to lath-shaped. The Sr2CaLa(VO4)3:Eu3+ phosphor (denoted as SCLVO:Eu3+) exhibited the strongest photoluminescence (PL) intensity at 618 nm among the samples under excitation of 394-nm near-UV (NUV) light. The study of Eu3+ doping concentration confirmed that Eu3+ could enter the lattice of the SCLVO matrix without altering its crystal structure. SCLVO:Eu3+ was found to strongly absorb 394 nm NUV light and 464 nm blue light. The optimal concentration of the Eu3+ dopant in the SCLVO host was 0.11, which resulted in the phosphor achieving an excellent PL intensity and a color purity of 98.68%. Tunable luminescence from the orange area (0.5280, 0.4522) of Commission Internationale de l'éclairage (CIE) to the red area (0.6313, 0.3650) was achieved by adjusting the concentration of Eu3+. Under 394 nm excitation, SCLVO:0.11Eu3+ phosphor has a quantum yield (QY) of 28.2% and excellent thermal stability with 0.383 eV activation energy. Consequently, White-light-emitting diode (WLED) based on SCLVO:0.11Eu3+ phosphor yielded a high color rendering index (CRI), low correlated color temperature (CCT), and CIE coordinates of 91.8, 5196 K, and (0.3407, 0.3612), respectively, under the 20 mA driven current. These results indicated the tremendous potential of SCLVO:0.11Eu3+ phosphors for application in WLEDs excited by NUV or blue light.  相似文献   

13.
《Ceramics International》2020,46(8):11994-12000
Eu3+-activated Sr9LiMg(PO4)7 phosphors, which presented bright red emissions mainly from the 5D07F2 transition of Eu3+ ions upon the near-ultraviolet excitation, were successfully synthesized in ambient atmosphere. The crystal structure, phase constitution, photoluminescent behaviors, decay time, internal quantum efficiency and thermal stability of the resultant phosphors were investigated in detail. Eu3+ ions are found to tend to occupy multiple Sr2+ sites, which are 7, 8 and 10-coordinated. The optimal doping concentration is 7 mol% and the electrical multipolar interaction contributed to the non-radiative energy transfer between Eu3+ ions in Sr9LiMg(PO4)7 host lattices. Temperature-dependent PL spectra indicated Sr9LiMg(PO4)7: Eu3+ possess excellent emission and color stability at elevated temperature. Fabricated single-chromatic LED prototype emit bright red light under 20 mA bias current, which demonstrates that Sr9LiMg(PO4)7: Eu3+ phosphor is of great potential as converted phosphor in NUV LED application.  相似文献   

14.
《Ceramics International》2019,45(15):18876-18886
Red-emitting Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphor with halide fluxes for use in the production of white light-emitting diodes (white LEDs) with high-colour rendering indices (CRIs) was prepared through the high-temperature solid-state method. Fluoride (NaF, SrF2, BaF2, CaF2, AlF3·3H2O and CeF3), chloride (NH4Cl, BaCl2, MgCl2, NaCl and LiCl) and composite fluxes (NaF + SrF2, SrF2+NH4Cl and NaF + NH4Cl) were applied in the phosphors. NaF, SrF2, NH4Cl and NaF + SrF2 fluxes had prominent effects on the characteristics of Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphors. Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphors with various powder morphologies can be obtained through the addition of fluxes, which are conducive for phosphor formation. The powder morphologies of phosphors incorporated with NaF + SrF2 were preferable to those of powders incorporated with other fluxes. This result indicated that the incorporation of NaF + SrF2 into Sr0.8Ca0.19AlSiN3:0.01Eu2+ yielded phosphors with high luminescent intensity and quantum efficiency, excellent thermal stability, narrow full widths at half-maximum (FWHM, 75.2 nm), uniform rod-like morphologies with large particle sizes (D50 = 16.99 μm) and good particle dispersion. White LEDs with high CRIs were obtained by combining prepared phosphors (NaF + SrF2 additive) with the commercial green-emitting phosphors Y3(Al,Ga)5O12:Ce3+ and (Sr,Ba)2SiO4:Eu2+. White LEDs with Y3(Al,Ga)5O12:Ce3+ and (Sr,Ba)2SiO4:Eu2+ phosphors had correlated colour temperatures (CCTs) of 3064 and 3023 K, respectively, and CRIs of 81.8 and 92.4, respectively. Therefore, NaF + SrF2 can be used as a favourable flux for the production of Sr0.8Ca0.19AlSiN3:0.01Eu2+.  相似文献   

15.
《Ceramics International》2016,42(16):18324-18332
A series of Eu2+-activated novel phosphor-silicate apatite Sr3LaNa(PO4)2SiO4 phosphors were synthesized by solid-state reaction. The X-ray diffraction (XRD) and Rietveld refinement, diffuse reflectance spectra, luminescent spectra, decay curves and thermal quenching properties were applied to characterize the obtained phosphors. The XRD result revealed that all the samples possessed only a single phase with hexagonal structure and the doping of Eu2+ ions were successfully incorporated into the crystal lattice. The reflectance spectra showed an obvious red-shift of the wavelength from 400 to 700 nm with increasing Eu2+ ion concentration. The three different crystallographic sites of Eu2+ ions had been confirmed by their lifetimes. All the samples exhibited broad absorption bands from 200 to 450 nm, revealing the phosphor-silicate phosphor interesting for application in the near-UV used phosphor-converted LED chips. These results suggested that the Eu2+-activated phosphor-silicate Sr3LaNa(PO4)2SiO4 phosphors have the potential for near-UV pumped white-light-emitting diodes (w-LEDs).  相似文献   

16.
Using urea, boric acid and polyethylene glycol (PEG) as auxiliary reagents, the novel red emitting phosphors (Sr0.85Zn0.15)3(PO4)2:Eu3+ have been successfully synthesized by a modified solid-state reaction. The material has potential application as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). The dependence of the properties of (Sr0.85Zn0.15)3(PO4)2:Eu3+ phosphors upon urea, boric acid and the PEG concentration and the quadric sintered temperature were investigated. The crystallization and particle sizes of (Sr0.85Zn0.15)3(PO4)2:Eu3+ have been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The results show that the boric acid, urea and the PEG were effective in improving the fluorescent intensity of (Sr0.85Zn0.15)3(PO4)2:Eu3+ and the optimum molar ratio was 0.1, 8 and 0.021, respectively.  相似文献   

17.
《Ceramics International》2023,49(16):26803-26810
A range of Eu3+-doped AMoO4 (A = Ca and Ba) phosphors were successfully synthetized, and their crystal structures, optical performance, and temperature measurement sensitivities were investigated in detail. Peak doping concentration of CaMoO4:Eu3+ phosphor was 0.18, while peak doping concentration of BaMoO4:Eu3+ phosphor may be greater than 0.18. Then, temperature-dependent photoluminescence emission spectra of representative CaMoO4:0.09Eu3+ and BaMoO4:0.03Eu3+ phosphors were recorded. CaMoO4:0.09Eu3+ phosphor exhibited abnormal thermal quenching, which was attributed to defects caused by heterovalent substitution of ions and increase in the temperature, and good thermal stability. Finally, the possibility of using both phosphors as optical thermometers was discussed, which exhibited good temperature sensitivity. However, CaMoO4:0.09Eu3+ phosphor exhibited two peak absolute (Sa, 1.28 %K−1 and 1.39 %K−1) and relative sensitivities (Sr, 1.21 %K−1 and 1.20 %K−1). In addition, variation trend of Sr value with temperature was considerably peculiar. Two optimum Sa and Sr values were attributed to abnormal thermal quenching of CaMoO4:0.09Eu3+ phosphor. Peak Sa and Sr values of BaMoO4:0.03Eu3+ phosphor was 12.39 %K−1 and 0.89 %K−1, respectively. In addition, Sa of AMoO4:Eu3+ phosphor was negatively related to Eu3+ central asymmetry, while peak Sr value was more inclined to appropriate ionic central asymmetry.  相似文献   

18.
The Tb3+/Sm3+ codoped Sr2LiSiO4F white emitting phosphors were synthesized by a solid‐state reaction technique at high temperature. The X‐ray diffraction patterns, photoluminescence properties, and decay behaviors have been investigated. The Tb3+ emissions (blue and green) and Sm3+ emissions (orange) are both observed in the codoped samples Sr2LiSiO4F: 0.05Sm3+, xTb3+ by near‐UV light (370 nm) exciting. The white emission has been obtained by adjusting Tb3+ doping concentration at 5% (= 0.05). These luminescent powders are expected to be a potential candidate as white emitting phosphor for near‐ultraviolet InGaN‐based white light‐emitting diodes.  相似文献   

19.
In this work, using Ca10.5(PO4)7 as the structural model, a number of Eu3+-doped [Ca9Na3xY1-x(PO4)7 (CNYP-I, 0 ≤ x ≤ 1/2) ← Ca10.5(PO4)7 → Ca9+yNa3/2-y/2Y(1-y)/2(PO4)7 (CNYP-II, 0 ≤ y ≤ 1)] phosphors were designed and synthesized through the heterovalent substitution of Y3+ and Na+ to Ca2+. The substitution mechanism, composition structure, luminescence performance, and thermal stability of Eu3+-doped CNYP-I (0 ≤ x ≤ 1/2) as well as the solid solutions of CNYP-II (0 ≤ y ≤ 1), were discussed in detail. The morphology and element composition of CNYP-I (0 ≤ x ≤ 1/2) and CNYP-II (0 ≤ y ≤ 1) solid solutions were analyzed by SEM and EDS. The PL spectra of the specimens were containing the predominant red peak of emission at 612 nm caused via the transition of 5D0-7F2, indicating that Eu3+ occupies the low-symmetry center. Moreover, the site symmetry Eu3+ occupied changed with the x/y value. The luminous intensity of Eu3+-doped CNYP-I (0 ≤ x ≤ 1/2) and CNYP-II (0 ≤ y ≤ 1) phosphors at 150°C maintained about 60% of room temperature. The representative compound CNYP-I (x = 1/3) was used as the red phosphor to prepare a near-UV based white LEDs along with Ra of 80.9 and CCT of 4100 K.  相似文献   

20.
《Ceramics International》2017,43(17):15107-15114
A series of eulytite-type Sr3Y1-x(PO4)3:xEu3+ (x = 0–0.13) and Sr3-yY(PO4)3:yEu2+ (y = 0–0.10) phosphors were successfully synthesized via gel-combustion and subsequent calcination in O2 and Ar/H2 atmospheres at 1250 °C, respectively. Detailed crystal structure analysis via Rietveld refinement showed that the phosphors were crystallized in the cubic system (space group I-43d, No. 220), in which the Eu3+ and Eu2+ activators reside at the Y3+ and Sr2+ sites, respectively. The trivalent Eu3+ ions (CN = 6) exhibited typical narrow-band luminescence via intra-4f6 transitions, with the red emission at ~ 615 nm being dominant (5D07F2 transition, FWHM = 15.9 ± 0.2 nm). The divalent Eu2+ ions (CN = 6 and 9) showed broad-band luminescence ranging from light-blue to blue via 4f65d1 → 4f7 transitions (FWHM = 115 ± 2 nm). The optimal Eu3+ and Eu2+ concentrations were determined to be 10 at% (x = 0.10) and 7 at% (y = 0.07), respectively, and the mechanisms of concentration quenching were discussed. The excitation/emission properties, fluorescence decay kinetics, CIE chromaticity, and particularly the rarely addressed thermal stability of the phosphors were investigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号