首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
《Ceramics International》2015,41(6):7582-7589
Fe (iron)-doped TiO2 nanorods were grown on fluorine doped tin oxide (FTO) substrates with various Fe doping concentrations using modified chemical bath deposition (M-CBD). We investigated the effects of Fe doping concentration on the morphological, structural, optical, and photoelectrochemical (PEC) properties of the TiO2 nanorods. From this study, it was found that the PEC properties were mainly dependent on the morphological and optical properties of the Fe-doped TiO2 nanorods. At low Fe doping concentration, the PEC properties were highly affected by the optical properties. On the other hand, the PEC properties were significantly affected by the morphological properties at high doping concentration. We observed a maximum photocurrent density of 0.48 mA/cm2 at a Fe doping concentration of 2 at% from this study. In addition, the donor density and flat-band potential of the Fe doping concentration from the Mott–Schottky plot were analyzed.  相似文献   

2.
A BiFeO3/TiO2 p-n heterojunction photocatalyst with ferroelectric synergistic effect under visible-light irradiation was developed through facile hydrolysis and precipitation by forming nanospheres of TiO2 on BiFeO3 nanocube to improve the photocatalytic efficiency. Analyses of the microstructure, optical properties, and photoelectrochemical performance indicate the formation of a core–shell heterostructure of BiFeO3/TiO2 with excellent energy band matching. The BiFeO3/TiO2 p-n heterojunction has enlarged specific surface area, higher sensitivity to visible-light, and improved separation and transfer efficiency of photoelectron-hole pairs than single TiO2 and BiFeO3. Moreover, the composite exhibits superior photocatalytic degradation performance for methylene blue (MB) and common antibiotic tetracycline (TC) under UV and visible-light irradiation. The MB degradation rate within 180 min reaches 78.4% and 90.4% under UV and visible-light irradiation, respectively. Furthermore, the enhanced photocatalytic mechanism of BiFeO3/TiO2 is explored by photoluminescence (PL), electrochemical impedance spectroscopy (EIS), transient photocurrent analysis, radical quenching, and band structure characterization.  相似文献   

3.
Single-crystalline perovskite BaTiO3 (BTO) nanorods were synthesized by (BaTi2O5-template) molten salt synthesis (MSS) methods. The effects of process parameters (eg, calcination temperature, reaction time, molten salt content, as well as different phase structures of TiO2 and barium oxides) on the formation of BTO nanorods and their structural characteristics were systematically investigated. The BTO nanorods synthesized at 800°C for 5 hours by MSS method with the molar salt ratios of BaCO3:TiO2 (anatase):NaCl:KCl equal to 1:1:60:60, exhibited smooth and clean surfaces through their lengths. Their diameters were in the range of 130-200 nm with average length of 5 μm. Large-scale amount of BTO nanorods was synthesized by BaTi2O5-template MSS method at 650°C with molar salt ratios of BaC2O4:BaTi2O5 (template):NaCl:KCl equal to 1:1:60:60. The BTO nanorods successfully retained the one-dimensional morphology of the BaTi2O5 templates and their lengths were in the range of 5-10 μm with an average diameter of ~300 nm. The single-crystalline nature of individual BTO nanorod was revealed by its selected area electron diffraction patterns and high-resolution TEM images. The BTO nanorods exhibited good optical properties with optical bandgaps in the range of 2.5-2.6 eV. Such optical bandgaps make the present BTO nanorods promising candidates for ferroelectric photovoltaic devices. Dielectric properties of the BTO nanorods synthesized by MSS method were comparatively investigated with the BTO nanorods synthesized by the BaTi2O5-template MSS method. It is found that the later BTO nanorods exhibit better dielectric properties and their synthesized temperature is also much lower than the former ones.  相似文献   

4.
Polyurethane acrylate (PUA)–Ag/TiO2 nanocomposites were synthesized through in situ polymerization. The well-dispersed Ag/TiO2 nanorods serve as photoinitiator. Meanwhile, the PUA–Ag/TiO2 nanocomposite films exhibit superior activity toward the photocatalytic degradation of Escherichia coli under UV light. The excellent UV curing and antibacterial activities can be ascribed to the synergistic effect of Ag and TiO2, which promotes the effective electron/hole separation and thus generates various reactive species. Thin films with these nanoparticles are more hydrophilic after UV illumination. And the antibacterial mechanism of the UV-curable PUA–Ag/TiO2 nanocomposites was proposed.  相似文献   

5.
To produce polyaniline (PAni) nanodevices that display excellent microwave absorbing behaviors, novel hexanoic acid-doped PAni micro/nanocomposites containing TiO2 nanoparticles and Fe3O4 microparticles (PAni/HA/TiO2/Fe3O4) were prepared by template-free method, particularly to improve the dielectric and magnetic property of PAni. PAni/HA/TiO2/Fe3O4 synthesized at different polymerization temperatures and polymerization time by various TiO2 and Fe3O4 contents, and particles size of TiO2 were prepared. The aim of this research is to investigate the effect of synthesis condition on the morphology behaviors of nanorods/tubes. The resulted nanorods/tubes indicated that PAni micro/nanocomposites exhibited polymerization through elongation. PAni micro/nanocomposites synthesized at 0°C resulted in large amounts of nanorods/tubes compared with those synthesized at subzero temperature and above 0°C. PAni/HA/TiO2 and PAni/HA/TiO2/Fe3O4 synthesized using TiO2 with diameter (particles size) 180 nm resulted in large amounts of nanorods/tubes (diameter nanorods/tubes = 80–140 nm) compared with those synthesized using TiO2 with diameter of 30 and 6 nm. Increasing TiO2 and Fe3O4 content above 10% will significantly reduce the amount of nanorods/tubes. In conclusion, synthesis parameters mentioned above are the significant factors that might affect the morphology behaviors of PAni nanostructures. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

6.
In this study, nanocomposites of poly(vinyl chloride) (PVC), using the synthesized titanium dioxide (TiO2) nanorods and commercial nanopowder of titanium dioxide (Degussa P25) were produced by melt blending. The presence of TiO2 nanorods in PVC matrix led to an improvement in mechanical properties of PVC nanocomposites in comparison with unfilled PVC. The photocatalytic degradation behavior of PVC nanocomposites were investigated by measuring their structural change evaluations, surface tension, and mechanical properties before and after UV exposure for 500 h. It was found that mechanical and physical properties of PVC nanocomposites are not reduced significantly after UV exposure in the presence of TiO2 nanorods in comparison with the presence of TiO2 nanoparticles, which can be due to the amorphous structure of the synthesized nanorods. Therefore, it can be concluded that TiO2 nanorods led to an improvement in photostability and mechanical properties of PVC nanocomposites. The interfacial adhesion between TiO2 nanorods and PVC matrix was also investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Highly porous, heat resisting ceramic aerogels are considered as promising materials for high-temperature insulation. However, the general structural characteristics of ceramic aerogel, such as poor mechanical strength and transparency to infrared radiation, pose a major obstacle to their practical application. In this paper, we report a general strategy to prepare hollow mullite fiber (HMF) structures by coaxial electrostatic spinning and grow TiO2 nanorods (TiO2/NAs) in situ on HMF. The ternary composite ceramic aerogel material was prepared by filling the pores of HMF-TiO2/NAs with SiCN aerogel. The TiO2/NAs increased the fiber/aerogel interfacial bonding of the composite (0.392 MPa, 30% strain) and improved the IR transmittance (∼0%, 1200 ℃) without sacrificing their low density and thermal conductivity. In addition, low thermal conductivity (0.041 W/(m·K), 1200 °C) and excellent high-temperature insulation properties allow the composite aerogel to meet the urgent need for lightweight, high-strength, high-temperature insulation systems for spacecraft.  相似文献   

8.
Photoelectrochemical (PEC) water splitting is beneficial and has received attractive attention due to a greater potential to generate hydrogen and oxygen from water by using plentiful solar light to solve the problem of energy crisis. Various active semiconductor materials are used in PEC water splitting applications. Nevertheless, in past decades, most of the researchers suggested that titanium oxide (TiO2) is the best photoanode for this type of applications. Now, Zinc oxide (ZnO) is considered a perfect substitution to TiO2 due to its comparable energy band structure and superior photogenerated electron transfer rate. In this study, bare and phosphorous-doped ZnO nanorods were successfully developed on fluorine-doped tin oxide-coated glass (FTO) substrate by chemical vapor deposition. X-ray diffraction (XRD) pattern authenticated hexagonal structure formation with strong diffraction peak of (101), which showed that ZnO nanorods were perfectly developed along c axis. The optical and morphological properties were analyzed by UV–Vis and scanning electron microscopy images. The energy-dispersive X-ray spectra demonstrated that doping agent phosphorous was present in ZnO nanorods. The PEC properties of the developed ZnO nanorods were further investigated and obtained results suggested that a small amount of phosphorous-doped ZnO nanorods enhances their PEC performance.  相似文献   

9.
Rutile‐type titanium dioxide (TiO2) nanorods were prepared, superficially modified and tested for the protection of polypropylene (PP) from the UVB and UVC irradiations. The silica coating blocked the active sites on the nanorods and the following calcination further reduced the amount of surface hydroxyl groups and thus, made the TiO2 nanorods more efficient against the photodegradation. Compared with spherical TiO2 nanoparticles, the calcined silica‐coated TiO2 nanorods demonstrated good photostabilization efficiency due to the excellent shielding effect and the improved dispersion of the nanoparticles in PP matrix. When used in combination with the conventional hindered amine light stabilizer (HALS), CHIMASSORB® 944, the surface modified TiO2 nanorods revealed strong synergistic effect during the photo‐oxidation of the PP composites. The capacity of photostabilization was much higher than the combination with the commercial spherical TiO2 nanoparticles and even higher than the typical HALS photostabilization system containing hindered phenol TINUVIN® 328. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40601.  相似文献   

10.
In this work, anatase and rutile TiO2 nanorods were fabricated using one-step liquid phase deposition process, followed by heat treatment in the range 300-800°C. The direct and indirect band gap of the TiO2 nanorods was estimated form optical absorption data which illustrated a red shift at higher temperatures owing to the different nature of excitons in anatase and rutile phases. The photoluminescence (PL) spectra revealed the presence of two main emission bands consisting of four peaks. It was found that two high-energy peaks located at 2.95-3.30 eV could be generated from exciton transitions from the conduction band to the valence band of TiO2 nanorods, while two low-energy peaks located at 2.43-2.64 eV may arise from surface state transitions. The PL intensity firstly increased with temperature and at 500°C reached a maximum value, then decreased through increasing temperature up to 800°C. These variations in the intensity of PL emission could be explained in terms of changes in phase structure, crystallinity, and amount of the oxygen vacancies, which are all dependent to the annealing temperature based on X-ray diffractometer and X-ray photoelectron spectrometer studies. These results indicated that annealing temperature allows to manipulate the properties of TiO2 nanorods for opto-electronic applications.  相似文献   

11.
Silver-modified TiO2 nanorods (SMTN) have been synthesized via controlled hydrolysis of tetrabutyltitanate (TBOT) in ethanol and immersion method by using AgNO3 as an Ag source. The physical and chemical properties of SMTN were studied by XRD, SEM, TEM, and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activity of the as-prepared products was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under visible light irradiation. The experimental results reveal that the TiO2 nanorods, which are well dispersed and uniform, attached large numbers of silver nanoparticles on the surface, and the major crystalline phase of TiO2 is anatase. The photocatalytic activity research shows that the SMTN exhibit an enhanced photocatalytic activity in visible light region compared with that of pure TiO2 nanorods and commercial TiO2 (P25).  相似文献   

12.
TiO2 nanotube arrays sensitized by PbS nanoparticles (TiO2 NTs/PbS) with enhanced visible-light activity were synthesized by a two-step approach including an electrochemical anodization technique followed by an in situ photodeposition approach. The structural investigations indicated that PbS nanoparticles grew uniformly on the walls of the TiO2 NTs. The TiO2 NTs/PbS exhibited more excellent photoelectrochemical properties than that of the TiO2 NTs under visible-light irradiation. The enhanced photoelectrochemical activity of the TiO2 NTs/PbS could be attributed to the improvement of visible-light absorption and charge separation derived from the coupling effect of the PbS nanoparticles and TiO2 NTs.  相似文献   

13.
TiO2 nanorod films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. The structures of these nanorod films were modified by the variation of the oxygen pressure during the sputtering process. Although all these TiO2 nanorod films deposited at different oxygen pressures show an anatase structure, the orientation of the nanorod films varies with the oxygen pressure. Only a very weak (101) diffraction peak can be observed for the TiO2 nanorod film prepared at low oxygen pressure. However, as the oxygen pressure is increased, the (220) diffraction peak appears and the intensity of this diffraction peak is increased with the oxygen pressure. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. At low oxygen pressure, these sputtered TiO2 nanorods stick together and have a dense structure. As the oxygen pressure is increased, these sputtered TiO2 nanorods get separated gradually and have a porous structure. The optical transmittance of these TiO2 nanorod films has been measured and then fitted by OJL model. The porosities of the TiO2 nanorod films have been calculated. The TiO2 nanorod film prepared at high oxygen pressure shows a high porosity. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different oxygen pressures as photoelectrode. The optimum performance was achieved for the DSSC using the TiO2 nanorod film with the highest (220) diffraction peak and the highest porosity.  相似文献   

14.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   

15.
A micro-porous composite polymer electrolyte (MCPE) was prepared in situ by adding TiO2 nanoparticles from the hydrolysis of titanium tetrabutoxide to a solution of poly(vinylidenefluoride-co-hexafluoropropylene) [P(VDF-HFP)] copolymer. The prepared microporous polymer films (MCPFs) were characterized by scanning electronic microscopy, X-ray diffraction, thermogravimetric analysis, FT-IR and electrochemical interface resistance. After the addition of TiO2 nanoparticles the polarity of CF2 groups in the polymer chains and the crystallinity of the MCPFs decreased. When the composite polymer film contained 8.5 wt% of TiO2 nanoparticles the MCPE exhibited excellent electrochemical properties such as high ionic conductivity, up to 2.40 × 10−3 S cm−1 at room temperature.  相似文献   

16.
In this study, 2D/3D TiO2/ZnIn2S4 nanostructures with TiO2 sheet cluster embedded into ZnIn2S4 micro flowers were fabricated via hydrothermal method. The matched band structure, the enlarged surface area and the efficient photo-induced charge transfer offered by effective heterostructures formed between the two components endowed the TiO2/ZnIn2S4 nanoarchitecture with excellent photocatalytic Cr(VI) reduction and tetracycline hydrochloride (TC) degradation performance. Especially, the Cr(VI) photoreduction efficiency of 50% TiO2/ZnIn2S4 was 8.8 times higher compared to pure ZnIn2S4. The enhanced separation efficiency of photo-excited charge carriers was induced by the matched band structure, the enlarged surface area and the strong interaction between TiO2 and ZnIn2S4. The key roles of ·O2? was confirmed via trapping experiments. Otherwise, the pathway of TC degradation was investigated. The proposed mechanism during photocatalysis process was also discussed according to the photocatalytic and characterization results.  相似文献   

17.
In this work, we investigate the controlled fabrication of Sn-doped TiO2 nanorods (Sn/TiO2 NRs) for photoelectrochemical water splitting. Sn is incorporated into the rutile TiO2 nanorods with Sn/Ti molar ratios ranging from 0% to 3% by a simple solvothermal synthesis method. The obtained Sn/TiO2 NRs are single crystalline with a rutile structure. The concentration of Sn in the final nanorods can be well controlled by adjusting the molar ratio of the precursors. Photoelectrochemical experiments are conducted to explore the photocatalytic activity of Sn/TiO2 NRs with different doping levels. Under the illumination of solar simulator with the light intensity of 100 mW/cm2, our measurements reveal that the photocurrent increases with increasing doping level and reaches the maximum value of 1.01 mA/cm2 at −0.4 V versus Ag/AgCl, which corresponds to up to about 50% enhancement compared with the pristine TiO2 NRs. The Mott-Schottky plots indicate that incorporation of Sn into TiO2 nanorod can significantly increase the charge carrier density, leading to enhanced conductivity of the nanorod. Furthermore, we demonstrate that Sn/TiO2 NRs can be a promising candidate for photoanode in photoelectrochemical water splitting because of their excellent chemical stability.  相似文献   

18.
Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 °C for 6–96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm−1. TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV–vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.  相似文献   

19.
《Ceramics International》2020,46(5):6012-6021
In the study, we doped N into TiO2 lattice to narrow its band gap energy. Then, the synthesized N doped TiO2 material was combined with AgI to form AgI/N–TiO2 (ANT) direct Z scheme materials. The synthesized materials were utilized for photocatalytic removal of tetracycline (TC) using visible irradiation as an excitation source. We also conducted radical scavenging experiments to determine photocatalytic degradation mechanism. We investigated that these photo-excited electrons (e) in N–TiO2 conduction band tended to combine with the left holes (h+) in AgI valence band maintaining h+ in the valence band of the N–TiO2 and e in the conduction band of the AgI. The remained e and h+ have high redox potential to initiate for photocatalytic decomposition of TC. Thus, the TC degradation by the ANT materials were significant greater than those by single components (AgI or N–TiO2). We also investigated that the TC degradation by the ANT-30 material, which the AgI: N–TiO2 molar ratio was 30%, exhibited that highest degradation efficiency. Finally, the ANT photocatalyst exhibited excellent stability during TC degradation processes supporting for its promising potential application in practical systems.  相似文献   

20.
We report the physical and electrochemical characterization of nanostructured composites formed by TiO2 templates and PEDOT-PPS films. TiO2 templates were prepared by sol-gel techniques using TiCl4 and TiF4 as the titania precursors, and also by adding a soluble polymer at the initial stages of the TiCl4 sol-gel synthesis to induce porous oxide networks. The effect of different precursors and annealing environments in the crystallite and particle size of the templates was followed by XRD and SEM studies, and correlated to the electrochemical properties of TiO2 templates dip-coated in a conducting polymer solution (PEDOT-PSS 1.3%). We found that the microstructure had a strong influence in the adsorption of the conductive polymer, which shows superior electrochemical activity in matrices with abundant surface hydroxylation, broad particle size distribution and residual carbon. Cyclic voltammetry and electrochemical impedance data revealed the differences between the several TiO2/PEDOT-PSS systems, with the best performance observed in systems based on TiO2 templates obtained from the TiCl4 sol-gel route and containing residual mesoporous carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号