首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The screen-printing multilayer grain growth (MLGG) technique is successfully applied to alkaline niobate lead-free piezoelectric ceramics. Highly textured (K0.5Na0.5)NbO3 (KNN) ceramics with 〈0 0 1〉 orientation (f = 93%) were fabricated by MLGG technique with plate-like NaNbO3 templates. The influence of sintering temperature on grain orientation and microstructure was studied. The textured KNN ceramics showed very high piezoelectric constant d33 = 133 pC/N, and high electromechanical coupling factor kp = 0.54. These properties were superior to those of conventional randomly oriented ceramics, and reach the level of those of textured KNN ceramic prepared by tape-casting technique. Compared with other grain orientation techniques, screen-printing is a simple, inexpensive and effective method to fabricate grain oriented lead-free piezoelectric ceramics.  相似文献   

2.
For enhancing the piezoelectric properties of ceramics (Bi0.5Na0.5)ZrO3 (BNZ) was used to partially substitute (K0.5Na0.5)NbO3 (KNN). The addition of BNZ changes the symmetry of KNN ceramics from orthorhombic to tetragonal, and finally to rhombohedral phase. A new phase boundary with both rhombohedral–orthorhombic and orthorhombic–tetragonal phase transitions near room temperature is identified for KNN–0.050BNZ ceramics, where optimum electrical properties were obtained: d33 = 360 pC/N, kp = 32.1%, εr = 1429, tanδ = 3.5%, and TC = 329°C. The results indicated a new method for designing high‐performance lead‐free piezoelectric materials.  相似文献   

3.
《Ceramics International》2022,48(7):9324-9329
(K,Na)NbO3 (KNN)-based ceramics have been proven to be formidable candidates among lead-free piezoelectric materials, yet poor reproducibility always hinders their progress. In the present study, the effects of low lithium substitution on the electrical properties and microstructure of (K0.5Na0.5)1-xLixNbO3 (KNLN) ceramics were investigated. All samples were synthesized by the sol-gel method. The Curie temperature (TC) of the ceramics shifted to higher temperature and gradually decreased the monoclinic-tetragonal (TM-T) phase transition. Li+ substitution had a prominent effect on the ferroelectric properties and improved the piezoelectric coefficient (d33) up to 181 pC/N. X-Ray Diffraction (XRD) studies and Field Emission Scanning Electron Microscopy (FESEM) images revealed an inevitable tetragonal tungsten bronze (TTB) secondary phase, which was formed during the preparation process. It was demonstrated that the volatilization of Li+ cations facilitated TTB growth. The coexistence of two different phase structures proved to enhance the KNN piezoelectric performance.  相似文献   

4.
《Ceramics International》2022,48(14):20251-20259
In this study, it is reported that various properties can be selectively derived in a pure (K0.5Na0.5)NbO3, KNN ceramics through optimizing the sintering temperature by the conventional sintering method. High piezoelectric, ferroelectric, and dielectric properties such as d33 = 127 pC/N, Pr = 31 μC/cm2, and εr = 767 are obtained at the sintering temperature of 1100 °C. On the contrary, the specimen sintered at 1130 °C does not show high piezoelectric and ferroelectric properties, but it is translucent with a transmittance of 22% and 57% at the wavelength of 800 and 1600 nm respectively and shows a very high dielectric constant εr of 881. The origin of the high piezoelectric constant owes to large remanent polarization and dielectric constant, and dense microstructure with uniform distribution of large grains with the conjunction of relatively large crystal anisotropy. On the other hand, dense microstructure with almost no porosity, highly compacted grain boundaries, uniform distribution of grains, and relatively low crystalline anisotropy are responsible for the translucency and large dielectric constant of the ceramic specimens. This study demonstrates that the lead-free KNN ceramic has the potential to show multiple noteworthy properties such as piezoelectric, ferroelectric, dielectric, and transparent properties. This work provides a pure KNN ceramic simultaneously with high piezoelectric and transparent characteristics prepared only by using the conventional sintering method at a moderate sintering temperature for the first time in the literature.  相似文献   

5.
Lead-free piezoelectric (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3xK0.5Na0.5NbO3 (BNKT–xKNN, x = 0–0.10) ceramics were synthesized using a conventional, solid-state reaction method. The effect of KNN addition on BNKT ceramics was investigated through X-ray diffraction (XRD), dielectric, ferroelectric and electric field-induced strain characterizations. XRD revealed a pure perovskite phase with tetragonal symmetry in the studied composition range. As the KNN content increased, the depolarization temperature (Td) as well as maximum dielectric constant (?m) decreased. The addition of KNN destabilized the ferroelectric order of BNKT ceramics exhibiting a pinched-type hysteresis loop with low remnant polarization (11 μC/cm2) and small piezoelectric constant (27 pC/N) at 3 mol% KNN. As a result, at x = 0.03 a significant enhancement of 0.22% was observed in the electric field-induced strain, which corresponds to a normalized strain (Smax/Emax) of ~434 pm/V. This enhancement is attributed to the coexistence of ferroelectric and non-polar phases at room temperature.  相似文献   

6.
《Ceramics International》2016,42(8):9949-9954
In this report, the effects of the calcination temperature of (K0.5Na0.5)NbO3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on the densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d33=128.3 pC/N, planar electromechanical coupling coefficient kp=32.2%, mechanical quality factor Qm=88, and dielectric loss tan δ=2.1%.  相似文献   

7.
The piezoelectric voltage constant (g33) is a material parameter critical to piezoelectric voltage-type sensors for detecting vibrations or strains. Here, we report a lead-free (K,Na)NbO3 (KNN)-based piezoelectric accelerometer with voltage sensitivity enhanced by taking advantage of a high g33. To achieve a high g33, the magnitudes of piezoelectric charge constant d33 and dielectric permittivity εr of KNN were best coupled by manipulating the intrinsic polymorphic phase boundaries effectively with the help of Bi-based perovskite oxide additives. For the KNN composition that derives benefit from the combination of εr and d33, the value of g33 was found to be 46.9 × 10?3 V·m/N, which is significantly higher than those (20 – 30 × 10?3 V·m/N) found in well-known polycrystalline lead-based ceramics including commercial Pb(Zr,Ti)O3 (PZT). Finally, the accelerometer sensor prototype built using the modified KNN composition demonstrated higher voltage sensitivity (183 mV/g) when measuring vibrations, showing a 29% increase against the PZT-based sensor (142 mV/g).  相似文献   

8.
《Ceramics International》2015,41(8):9555-9559
A second calcination–milling step was introduced in the conventional processing of (K, Na)0.5NbO3 (KNN) ceramics (sintered in air) to further homogenenize the particle size distribution of the pre-sintered powders. The ceramic derived from the powders prepared by the two-step route possesses grains with better uniformity and is more compact. The relative density of the bulk ceramic reached 96.9%. Excellent properties are obtained in as-prepared KNN ceramics with kp=44%, d33=111 pC/N, tanδ=0.85%, ε33T/εo=311, Qm=193, Pr=25.4 μC/cm2, d33=251 pm/V, which are superior to those of the ceramics derived from the powders calcined once as used in the traditional processing. These results indicate that twice-calcination–milling route is shown to be a facile and effective way to simultaneously improve the piezoelectric and ferroelectric properties of KNN ceramics without sintering aids.  相似文献   

9.
Lead-free (K0.5Na0.5)NbO3-based (KNN) piezoceramics featuring a polymorphic phase boundary (PPB) between the orthorhombic and tetragonal phases at room temperature are reported to possess high piezoelectric properties but with inferior cycling stability, while the ceramics with a single tetragonal phase show improved cycling stability but with lower piezoelectric coefficients. In this work, electric biasing in-situ transmission electron microscopy (TEM) study is conducted on two KNN-based compositions, which are respectively at and off PPB. Our observations reveal the distinctive domain responses in these two ceramics under cyclic fields. The higher domain wall density in the poled KNN at PPB contributes to the high piezoelectric properties. Upon cycling, however, a new microstructure feature, “domain intersection”, is directly observed in this PPB composition. In comparison, the off-PPB KNN ceramic develops large domains during poling, which experience much less extent of disruption during cycling. Our comparative study provides the basis for understanding the relation between phase composition and piezoelectric performance.  相似文献   

10.
This study investigated the phase transition behavior and electrical properties of (K0.5Na0.5)(Nb1-xZrx)O3 (KNN?100xZ) and (K0.5Na0.5)NbO3yBaZrO3 (KNN–100yBZ) lead–free piezoelectric ceramics. The phase transitions in crystal structures were compared in KNN ceramics between single Zr4+ doping and Ba2+Zr4+ co?doping. Piezoelectric properties such as the piezoelectric constant (d33) and electromechanical coupling factor (kp) are optimized for KNN?6BZ ceramics and were clarified via the polymorphic phase transition from the orthorhombic to pseudocubic phase. The fitted degree of diffuseness (γ) for a phase transition from the modified Curie–Weiss law indicated that KNN ceramics as ferroelectrics are gradually transformed through BaZrO3 modification. Accordingly, the enhanced strain properties at y = 0.08 consist of coexisting ferroelectric domains and polar nanoregions that are supported by ferroelectric–to–relaxor crossover in KNN?100BZ ceramics.  相似文献   

11.
In this paper, a simple, reproducible and cost-effective solid-state reaction sintering process is developed to fabricate (K0.5Na0.5)NbO3-xBaNi0.5Nb0.5O3-δ (KNN-xBNN) ceramics with a narrow bandgap and room-temperature ferromagnetism. Here, we report a systematic investigation of the influence of the BaNi0.5Nb0.5O3-δ (BNN) concentration on the properties of KNN-xBNN ceramics. All ceramics form orthorhombic perovskite structures with a space group Amm2 and a weak peak at the wavelength of 550 cm?1 that is characteristic of the pillow shoulder of the orthorhombic phase. KNN-xBNN ceramics with x between 0.02 and 0.08 have a narrow bandgap of about 2.5 eV—much smaller than the 3.5 eV of its parent (K0.5Na0.5)NbO3 (KNN) ceramic—which is attributed to Ni2+-oxygen vacancy combinations (Ni2+-VO) raising the valence electron energy level of the KNN ceramic. Furthermore, doping BNN into KNN ceramics can significantly convert the magnetism from diamagnetism to ferromagnetism and the component of x = 0.08 achieves both maximum saturation magnetisation intensity (14 memu/g) and minimum coercive magnetic field (80 Oe). Our findings provide a systematic insight into the bandgap tunability and ferromagnetism induction at room temperature in lead-free perovskite KNN-xBNN ceramics, as well as demonstrate their potential applications in perovskite solar cells and multiferroic devices.  相似文献   

12.
《Ceramics International》2023,49(15):25035-25042
Due to their high Curie temperature and large dielectric constant, potassium sodium niobate-based lead-free piezo-ceramics (KNN) are regarded as one of the most hopeful piezo-ceramics candidate materials. Herein, (1-x) (K0.5Na0.5)(Nb0.96Sb0.04)O3 - x (Ba0.5Sr0.25)ZrO3 [abbreviated as (1-x) KNNS - x BSZ, x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05] lead-free piezo-ceramics are prepared through chemical doping using the traditional solid phase method. The phase structure, domain structure, and microstructure of KNN ceramics have been thoroughly examined. Doping of BZS causes the formation of R-O-T phase boundaries and increases the proportion of polar nano-domains within the crystals, thus increasing the rate of motion of the domain walls and making the domains more easily deflected. The piezoelectric and dielectric properties of the material are improved simultaneously. When x = 0.04, the piezoelectric properties of ceramics reach the optimal value (d33 = 351 pC/N, TC = 305 °C, Kp = 43% and εr = 41267). This work offers a fresh concept for enhancing the overall performance of lead-free piezo-ceramics and aids in understanding the nature of doping modification of lead-free piezo-ceramics.  相似文献   

13.
《Ceramics International》2022,48(7):9297-9303
Some lead-free piezoelectrics cannot meet the requirement for application in extremely harsh high-temperature surroundings. In this work, an enhanced piezoelectric performance with high piezoelectric coefficient (d33) and high Curie temperature (Tc) has been achieved by replacing the Ti4+ with the Co3+ in Na0.5Bi4.46Ce0.04Ti4-xCoxOy ceramics. The introduction of Co3+ decreases the B–O bond lengths, leading to the shrinkage of BO6 octahedra and lattice volume. The electron localization degree of B–O bond and the polarity of the BO6 octahedra were improved by diminution of lattice volume concomitantly, which were indicated by the first principle calculations. Therefore, an enhanced piezoelectric coefficient of 22 pC/N and high Tc of 690.2 °C have been realized in Na0.5Bi4.46Ce0.04Ti4-xCoxOy ceramics with x = 0.02 mol. Our work gives a good paradigm to design superhigh temperature piezoelectric devices for practical application in extremely harsh circumstances.  相似文献   

14.
《Ceramics International》2022,48(5):6565-6573
Plenty of works have done to enhance the piezoelectricity of potassium-sodium niobate (KNN), aiming to replace lead-zirconate titanate (PZT) in the consideration of eco-friendly requirement. However so far, KNN ceramics with high piezoelectric performances tend to have a low mechanical quality factor (Qm), which could result in excessive dielectric loss, especially when working in high frequencies. Thus, increasing Qm is a crucial task in KNN-based ceramics. By constructing phase boundaries together with inducing oxygen vacancies, a new KNN ceramic system is built by using conventional solid-state method with high Qm (>250), high piezoelectric performance as well as outstanding temperature stability. Optimum overall properties of KNN-based ceramics can be as large as d33 = 231 pC/N, Qm = 355, TC = 366 °C. This work provides a deeper insight to KNN-based ceramics with high mechanical quality factor and makes a progress on the high frequency application of lead-free ceramics.  相似文献   

15.
《Ceramics International》2022,48(21):31265-31272
Bismuth layer structured Na0.5Bi4.5Ti4O15 (NBT) ferroelectric is one of the most promising materials for potential applications at high temperature. However, it is challenged to achieve a balance between high Curie temperature piezoelectric coefficient and excellent thermal stability for NBT piezoceramics. Here, through chemical modification at the A site of NBT with Ca2+, novel (Na0.5Bi0.5)1-xCaxBi4Ti4O15 piezoceramics with excellent properties fabricated by solid state reaction were studied. After doping of Ca2+, the Curie temperature TC increased from 648 °C to 662 °C while the piezoelectric coefficient d33 increased from 14 pC/N to 22 pC/N which can be attributed to the intrinsic contribution of TiO6 octahedral lattice distortion (tilting and rotation) and the extrinsic contribution of the increased density of domain walls. The composition of (Na0.5Bi0.5)0.95Ca0.05Bi4Ti4O15 ceramics with x = 0.05 has the optimal performance with high TC of 655 °C, large d33 of 22 pC/N, high electrical resistivity ρ close to 107 Ω cm at 500 °C and especially excellent thermal stability of d33 only about 5% reduction after being annealed at 625 °C. The work effectively reveals the great potential of CNBT-5 ceramics for high-temperature piezoelectric applications.  相似文献   

16.
《Ceramics International》2023,49(1):474-479
Achieving both the large transduction coefficient (the product of piezoelectric charge d33 and voltage coefficients g33) and high Curie temperature is very important to improve the power generation performance and their thermal stability of piezoelectric energy harvesters. It is difficult to improve the transduction coefficient of the commercial PZT based piezoelectric ceramics due to the same variation trend of piezoelectric charge coefficient and dielectric constant with chemical modifications. In this work, Bi2O3 and Fe2O3 co-modified ((Pb1-xBix)((Zr0.53Ti0.47)1-xFex)O3) ceramics were prepared by conventional solid state reaction method, and their dielectric and piezoelectric properties were studied. The piezoelectric charge coefficient d33 increases by Bi and Fe co-modifications due to the enlarged grain size and reduced lattice distortion, while the dielectric constant ε33 deceases mainly owing to the increased micro-pores in grains, leading to the enhancement transduction coefficient d33×g33. The Curie temperature Tc and maximum transduction coefficient d33×g33 are 346 °C and 17169 × 10?15 m2/N, respectively, which are both higher than those of commercial PZT and PZN-PZT based piezoelectric ceramics. This work provides a new way to enhance the transduction coefficient of PZT based ceramics for piezoelectric energy harvesters used in wide temperature range.  相似文献   

17.
Piezoelectric energy harvesters have become increasingly popular in the field of green energy because of the ability to convert low-frequency environmental vibrations into usable electricity. To fabricate high-performance energy harvesters, the key requirements are piezoelectric ceramics with a small grain size, of near-full density, the intended stoichiometric ratio and a high transduction coefficient. In this work, the effects of two-step sintering on the sinterability, microstructure, piezoelectric properties and energy harvesting performance of (K0.5Na0.5)NbO3 were systematically investigated. Compared with conventional single-step sintering, two-step sintering samples were of higher density, increasing from 91 % to 95 % of theoretical, reduced mean grain size, down from 17 μm to 7.5 μm, and decreased evaporation of the alkali metals. This translated into an improved piezoelectric performance (d33 ∼122 pC/N, kp ∼36 % and Qm ∼76), a higher transduction coefficient and energy conversion efficiency as well as a higher open-circuit voltage and power density. This demonstrates the potential of two-step sintering as a high through-put sintering technique for moderate-performance, pure KNN ceramics.  相似文献   

18.
《Ceramics International》2023,49(4):6068-6076
Ferroelectric ceramics have good piezoelectric and ferroelectric properties and can be used for energy storage equipment and actuators. Nevertheless, current research on dielectric capacitors has only focused on the energy storage density, but ignored efficiency. Moreover, conventional piezoelectric materials have a large strain hysteresis. In this work, (Al0.5Nb0.5)4+ (AN) complex ions doped 0.7Bi0.5Na0.5TiO3-0.3Ba0.3Sr0.7TiO3 (BNBST) ceramics were prepared. Doping AN destroyed the long-range ordered ferroelectric domains and generated polar nano regions, resulting in a gradual thinning and inclination of polarization hysteresis loops and an increase in relaxor degree. For BNBST-3AN ceramics, a Wrec of 1.52 J/cm3 and a η of 92.1% were achieved at 150 kV/cm. Meanwhile, BNBST-3AN ceramics had good energy storage temperature stability and cycling performance. The AN doping reduced the strain hysteresis in BNBST ceramics. BNBST-2AN ceramics exhibited a longitudinal electrostrictive coefficient Q33 ~ 0.0292 m4/C2 and a field-induced strain of 0.25% with low strain hysteresis (6.67%). Furthermore, BNBST-4AN ceramics had superior dielectric temperature stability from 24 to 270 °C. All results show that BNBST-100xAN ceramics have great promise for energy storage devices and actuators.  相似文献   

19.
The piezoelectric properties of (K0.5Na0.5)NbO3 (KNN) are normally enhanced by chemical substitutions or doping to form solid solutions. In this study, we report that the piezoelectric properties of KNN and thermal stability of piezoelectric coefficient d33 can be both enhanced by forming the composite of KNN:ZnO. The d33 of KNN:0.2ZnO can be improved to 110 pC/N by introducing the ZnO nanoparticles, which is better than the pure KNN (d33 = 85 pC/N). The Curie temperature (TC = 407°C) remains well comparable to the pure KNN (TC = 408°C). Furthermore, the thermal stability of both remanent polarization (Pr) and piezoelectric parameter (d33) is improved. The enhanced thermal stability could be related to the induced built‐in electric field or the enhanced sinterability by the addition of ZnO. The present results may help to optimize the piezoelectric properties of lead‐free materials by forming composite.  相似文献   

20.
Cold sintering process (CSP) is a new method to prepare ceramics under quite low temperature. In this work, two-step CSP under different pressures was employed to prepare (K0.5Na0.5)NbO3 (KNN) ceramics. The density of KNN green pellets can be raised by enhancing the pressure of second-step CSP. Energy-dispersive spectroscopy reveals the composition segregation of A-site cations in large grains. The dissolution rate of K+ in an aqueous medium is faster than Na+, and high pressure can accelerate K+ dissolution, resulting in more Na+ in some grains. Besides, the diffusion rate of Na+ in grains is better than K+, which promote the grains growth. Finally, the piezoelectric property is improved even with low ceramic density due to the larger grains, which possess the higher performance composition. This result demonstrates that the pressure and inhomogeneous dissolution of alkali metal ions among CSP play an important role in grain growth and piezoelectric enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号